Nanodelivery of phytobioactive compounds for treating aging-associated disorders

Abstract

Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmad MZ, Akhter S, Mohsin N, Abdel-Wahab BA, Ahmad J, Warsi MH, Rahman M, Mallick N, Ahmad FJ (2014) Transformation of curcumin from food additive to multifunctional medicine: Nanotechnology bridging the gap. Curr Drug Discov Technol 11:197–213. https://doi.org/10.2174/1570163811666140616153436

    CAS  Article  Google Scholar 

  2. Ahmad N, Banala VT, Kushwaha P, Karvand A, Sharma S, Tripathi AK, Verma A, Trivedi R, Mishra PR (2016) Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Adv 6:97613–97628. https://doi.org/10.1039/C6RA17141A

    CAS  Article  Google Scholar 

  3. Ahmad K, Rabbani G, Baig MH, Lim JH, Khan ME, Lee EJ, Ashraf GM, Choi I (2018) Nanoparticle-based drugs: A potential armamentarium of effective anti-cancer therapies. Curr Drug Metab 19:839–846. https://doi.org/10.2174/1389200218666170823115647

    CAS  Article  Google Scholar 

  4. Ahn J, Jeong J, Lee H, Sung MJ, Jung CH, Lee H, Hur J, Park JH, Jang YJ, Ha TY (2017) Poly(lactic-co-glycolic acid) nanoparticles potentiate the protective effect of curcumin against bone loss in ovariectomized rats. J Biomed Nanotech 13:688–698. https://doi.org/10.1166/jbn.2017.2372

    CAS  Article  Google Scholar 

  5. Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS (2018) Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials (Basel) 8:E634. https://doi.org/10.3390/nano8090634

    CAS  Article  Google Scholar 

  6. Alam MM, Abdullah KM, Singh BR, Naqvi AH, Naseem I (2016) Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies. RSC Adv 6:55092–55103. https://doi.org/10.1039/C6RA04821H

    CAS  Article  Google Scholar 

  7. Alejandro P, Constantinescu F (2018) A review of osteoporosis in the older adult: An update. Rheum Dis Clin North Am 44:437–451. https://doi.org/10.1016/j.rdc.2018.03.004

    Article  Google Scholar 

  8. Alfaras I, Di Germanio C, Bernier M, Csiszar A, Ungvari Z, Lakatta EG, de Cabo R (2016) Pharmacological strategies to retard cardiovascular aging. Circ Res 118:1626–1642. https://doi.org/10.1161/CIRCRESAHA.116.307475

    CAS  Article  Google Scholar 

  9. Ameruoso A, Palomba R, Palange AL, Cervadoro A, Lee A, Mascolo DD, Decuzzi P (2017) Ameliorating amyloid-β fibrils triggered inflammation via curcumin-loaded polymeric nanoconstructs. Front Immunol 8:1411. https://doi.org/10.3389/fimmu.2017.01411

    CAS  Article  Google Scholar 

  10. Amiot MJ, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17:573–586. https://doi.org/10.1111/obr.12409

    CAS  Article  Google Scholar 

  11. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacog Rev 10:84–89. https://doi.org/10.4103/0973-7847.194044

    Article  Google Scholar 

  12. Anand K, Tiloke C, Naidoo P, Chuturgoon AA (2017) Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B 173:626–639. https://doi.org/10.1016/j.jphotobiol.2017.06.028

    CAS  Article  Google Scholar 

  13. Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. JJ Control Release 190:15–28. https://doi.org/10.1016/j.jconrel.2014.03.053

    CAS  Article  Google Scholar 

  14. Arora R, Kuhad A, Kaur IP, Chopra K (2015) Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain 19:40–952. https://doi.org/10.1002/ejp.620

    CAS  Article  Google Scholar 

  15. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 24:61–74. https://doi.org/10.1080/10717544.2016.1228718

    CAS  Article  Google Scholar 

  16. Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Vandelli MA, Tosi G, Grabrucker AM (2017) Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 526:413–424. https://doi.org/10.1016/j.ijpharm.2017.05.015

    CAS  Article  Google Scholar 

  17. Barry M, Pearce H, Cross L, Tatullo M, Gaharwar AK (2016) Advances in nanotechnology for the treatment of osteoporosis. Curr Osteoporos Rep 14:87–94. https://doi.org/10.1007/s11914-016-0306-3

    Article  Google Scholar 

  18. Bayón-Cordero L, Alkorta I, Arana L (2019) Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 9:E474. https://doi.org/10.3390/nano9030474

    CAS  Article  Google Scholar 

  19. Beard JR, Bloom DE (2015) Towards a comprehensive public health response to population ageing. Lancet 385:658–661. https://doi.org/10.1016/S0140-6736(14)61461-6

    Article  Google Scholar 

  20. Behloul N, Wu G (2013) Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 698:31–38. https://doi.org/10.1016/j.ejphar.2012.11.013

    CAS  Article  Google Scholar 

  21. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35. https://doi.org/10.1038/s41698-017-0038-6

    Article  Google Scholar 

  22. Bhalekar MR, Madgulkar AR, Desale PS, Marium G (2017) Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Ind Pharm 43:1003–1010. https://doi.org/10.1080/03639045.2017.1291666

    CAS  Article  Google Scholar 

  23. Bilia AR, Piazzini V, Guccione C, Risaliti L, Asprea M, Capecchi G, Bergonzi MC (2017) Improving on nature: The role of nanomedicine in the development of clinical natural drugs. Planta Med 83:66–381. https://doi.org/10.1055/s-0043-102949

    CAS  Article  Google Scholar 

  24. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931. https://doi.org/10.1155/2016/5698931

    CAS  Article  Google Scholar 

  25. Bjelakovic G, Nikolova D, Gluud C (2014) Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care 17:40–44. https://doi.org/10.1097/MCO.0000000000000009

    CAS  Article  Google Scholar 

  26. Borel T, Sabliov CM (2014) Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu Rev Food Sci Technol 5:197–213. https://doi.org/10.1146/annurev-food-030713-092354

    CAS  Article  Google Scholar 

  27. Camins A, Junyent F, Verdaguer E, Beas-Zarate C, Rojas-Mayorquín AE, Ortuño-Sahagún D, Pallàs M (2009) Resveratrol: An antiaging drug with potential therapeutic applications in treating diseases. Pharmaceuticals (Basel) 2:194–205. https://doi.org/10.3390/ph2030194

    CAS  Article  Google Scholar 

  28. Campesi I, Marino M, Cipolletti M, Romani A, Franconi F (2018) Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 57:2677–2691. https://doi.org/10.1007/s00394-018-1695-0

    CAS  Article  Google Scholar 

  29. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571:183–192. https://doi.org/10.1038/s41586-019-1365-2

    CAS  Article  Google Scholar 

  30. Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, Camins A, Turowski P, García ML (2019) Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release 301:62–75. https://doi.org/10.1016/j.jconrel.2019.03.010

    CAS  Article  Google Scholar 

  31. Chan H, Král P (2018) Nanoparticles self–assembly within lipid bilayers. ACS Omega 3:10631–10637. https://doi.org/10.1021/acsomega.8b01445

    CAS  Article  Google Scholar 

  32. Chauhan AS (2015) Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann N Y Acad Sci 1348:134–140. https://doi.org/10.1111/nyas.12816

    CAS  Article  Google Scholar 

  33. Chavva SR, Deshmukh SK, Kanchanapally R, Tyagi N, Coym JW, Singh AP, Singh S (2019) Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: potential synergistic interactions. Nanomaterials (Basel) 9:E396. https://doi.org/10.3390/nano9030396

    CAS  Article  Google Scholar 

  34. Chen R, Wang S, Zhang J, Chen M, Wang Y (2014) Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study. Drug Deliv 22:666–674. https://doi.org/10.3109/10717544.2014.882446

    CAS  Article  Google Scholar 

  35. Chen Y, Zhang H, Yang J, Sun H (2015) Improved antioxidant capacity of optimization of a self-microemulsifying drug delivery system for resveratrol. Molecules 20:21167–21177. https://doi.org/10.3390/molecules201219750

    CAS  Article  Google Scholar 

  36. Chen S, Jiang H, Wu X, Fang J (2016, 2016) Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm:9340637. https://doi.org/10.1155/2016/9340637

  37. Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L (2013) Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 15:324–336. https://doi.org/10.1208/s12248-012-9444-4

    CAS  Article  Google Scholar 

  38. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS (2018) Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 413:122–134. https://doi.org/10.1016/j.canlet.2017.11.002

    CAS  Article  Google Scholar 

  39. Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N (2012) Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2:112–123. https://doi.org/10.1007/s13346-012-0063-5

    CAS  Article  Google Scholar 

  40. Chu C, Deng J, Man Y, Qu Y (2017) Green tea extracts epigallocatechin-3-gallate for different treatments. Biomed Res Int 2017:5615647. https://doi.org/10.1155/2017/5615647

    CAS  Article  Google Scholar 

  41. Cleutjens FAHM, Boonen AERCH, van Onna MGB (2019) Geriatric syndromes in patients with rheumatoid arthritis: a literature overview. Clin Exp Rheumatol 37:496–501

    Google Scholar 

  42. Conte R, Marturano V, Peluso G, Calarco A, Cerruti P (2017) Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int J Mol Sci 18:E709. https://doi.org/10.3390/ijms18040709

    CAS  Article  Google Scholar 

  43. Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR (2018) New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit Rev Food Sci Nutr 58:942–957. https://doi.org/10.1080/10408398.2016.1233860

    CAS  Article  Google Scholar 

  44. Crimmins EM (2015) Lifespan and healthspan: Past, present, and promise. Gerontologist 55:901–911. https://doi.org/10.1093/geront/gnv130

    Article  Google Scholar 

  45. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl 80:771–784. https://doi.org/10.1016/j.msec.2017.06.004

    CAS  Article  Google Scholar 

  46. Csiszár A, Csiszar A, Pinto JT, Gautam T, Kleusch C, Hoffmann B, Tucsek Z, Toth P, Sonntag WE, Ungvari Z (2015) Resveratrol encapsulated in novel fusogenic liposomes activates Nrf2 and attenuates oxidative stress in cerebromicrovascular endothelial cells from aged rats. J Gerontol A Biol Sci Med Sci 70:303–313. https://doi.org/10.1093/gerona/glu029

    CAS  Article  Google Scholar 

  47. Cui T, Zhang S, Sun H (2017) Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 37:1253–1260. https://doi.org/10.3892/or.2017.5345

    CAS  Article  Google Scholar 

  48. da Costa IM, Cavalcanti JRLP, de Queiroz DB, do Rêgo ACM, Araújo Filho I, Parente P, Botelho MA, Guzen FP (2017) Supplementation with herbal extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s disease: a systematic review. Phytother Res 31:959–970. https://doi.org/10.1002/ptr.5813

    Article  Google Scholar 

  49. da Rocha Lindner G, Bonfanti Santos D, Colle D, Gasnhar Moreira EL, Daniel Prediger R, Farina M, Khalil NM, Mara Mainardes R (2015) Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 10:1127–1138. https://doi.org/10.2217/nnm.14.165

    CAS  Article  Google Scholar 

  50. da Silva Santos V, Badan Ribeiro AP, Andrade Santana MH (2019) Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res Int 122:610–626. https://doi.org/10.1016/j.foodres.2019.01.032

    CAS  Article  Google Scholar 

  51. Date AA, Hanes J, Ensign LM (2016) Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Releas 240:504–526. https://doi.org/10.1016/j.jconrel.2016.06.016

    CAS  Article  Google Scholar 

  52. de la Torre C, Ceña V (2018) The delivery challenge in neurodegenerative disorders: the nanoparticles role in Alzheimer's disease therapeutics and diagnostics. Pharmaceutics 10:E190. https://doi.org/10.3390/pharmaceutics10040190

    CAS  Article  Google Scholar 

  53. Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, Mendoza-Muñoz N, González-Torres M, Florán B, Cortés H, Leyva-Gómez G (2019) Formulations of curcumin nanoparticles for brain diseases. Biomolecules 9:E56. https://doi.org/10.3390/biom9020056

    CAS  Article  Google Scholar 

  54. Deng W, Wang H, Wu B, Zhang X (2019) Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B 9:74–86. https://doi.org/10.1016/j.apsb.2018.09.009

    Article  Google Scholar 

  55. Dewangan AK, Perumal Y, Pavurala N, Chopra K, Mazumder S (2017) Preparation, characterization and anti-inflammatory effects of curcumin loaded carboxymethyl cellulose acetate butyrate nanoparticles on adjuvant induced arthritis in rats. J Drug Deliv Sci Technol 41:269–279. https://doi.org/10.1016/j.jddst.2017.07.022

    CAS  Article  Google Scholar 

  56. Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63:342–351. https://doi.org/10.1111/j.2042-7158.2010.01225.x

    CAS  Article  Google Scholar 

  57. Dhivya R, Ranjani J, Rajendhran J, Mayandi J, Annaraj J (2018) Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater Sci Eng C Mater Biol Appl 82:182–189. https://doi.org/10.1016/j.msec.2017.08.058

    CAS  Article  Google Scholar 

  58. Elliot PJ, Jirousek M (2008) Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs 9:371–378. https://doi.org/10.1016/j.bbrc.2008.06.048

    CAS  Article  Google Scholar 

  59. El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 177:389–398. https://doi.org/10.1016/j.colsurfb.2019.02.024

    CAS  Article  Google Scholar 

  60. Eng QY, Thanikachalam PV, Ramamurthy S (2018) Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 210:296–310. https://doi.org/10.1016/j.jep.2017.08.035

    CAS  Article  Google Scholar 

  61. Fan Y, Yi J, Zhang Y, Yokoyama W (2018) Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem 239:1210–1218. https://doi.org/10.1016/j.foodchem.2017.07.075

    CAS  Article  Google Scholar 

  62. Flora G, Gupta D, Tiwari A (2013) Nanocurcumin: A promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Sys 30:331–368. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013007236

    CAS  Article  Google Scholar 

  63. Franco R, Navarro G, Martínez-Pinilla E (2019) Hormetic and mitochondria–related mechanisms of antioxidant action of phytochemicals. Antioxidants (Basel) 8:E373. https://doi.org/10.3390/antiox8090373

    CAS  Article  Google Scholar 

  64. Frasca D, Blomberg BB, Paganelli R (2017) Aging, obesity, and inflammatory age-related diseases. Front Immunol 8:1745. https://doi.org/10.3389/fimmu.2017.01745

    CAS  Article  Google Scholar 

  65. Frias I, Neves AR, Pinheiro M, Reis S (2016) Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des Devel Ther 10:3519–3528. https://doi.org/10.2147/DDDT.S109589

    CAS  Article  Google Scholar 

  66. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591. https://doi.org/10.2147/IJN.S36111

    Article  Google Scholar 

  67. Frozza RL, Bernardi A, Paese K, Hoppe JB, da Silva T, Battastini AM, Pohlmann AR, Guterres SS, Salbego C (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6:694–703. https://doi.org/10.1166/jbn.2010.1161

    CAS  Article  Google Scholar 

  68. Ganesan P, Ko HM, Kim IS, Choi DK (2015) Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 10:6757–6772. https://doi.org/10.2147/IJN.S93918

    CAS  Article  Google Scholar 

  69. Ganesan P, Arulselvan P, Choi DK (2017) Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. IInt J Nanomedicine 12:1097–1111. https://doi.org/10.2147/IJN.S124601

    CAS  Article  Google Scholar 

  70. Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK (2018a) Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments Int J Nanomedicine 13:6109-6121. 10.2147 /IJN.S178077.

  71. Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK (2018b) Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 13:1569–1583. https://doi.org/10.2147/IJN.S155593

    CAS  Article  Google Scholar 

  72. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–286. https://doi.org/10.1016/j.apsb.2016.05.013

    Article  Google Scholar 

  73. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Zheng Y, Gou M, Huang M, Guo G, Huang N, Qian Z, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4:7021–7030. https://doi.org/10.1039/c2nr32181e

    CAS  Article  Google Scholar 

  74. Gigliobianco MR, Casadidio C, Censi R, Di Martino P (2018) Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 10:E134. https://doi.org/10.3390/pharmaceutics10030134

    CAS  Article  Google Scholar 

  75. Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M (2018) Phytotherapy in the management of diabetes: a review. Molecules 23:E105. https://doi.org/10.3390/molecules23010105

    CAS  Article  Google Scholar 

  76. Granja A, Frias I, Rute Neves A, Pinheiro M, Reis S (2017) Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int 2017:5813793. https://doi.org/10.1155/2017/5813793

    CAS  Article  Google Scholar 

  77. Grottkau BE, Cai X, Wang J, Yang X, Lin Y (2013) Polymeric nanoparticles for a drug delivery system. Curr Drug Metab 14:840–846. https://doi.org/10.1007/978-1-60761-609-2_11

    CAS  Article  Google Scholar 

  78. Gruber J, Halliwell B (2017) Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 61:389–399. https://doi.org/10.1042/EBC20160091

    Article  Google Scholar 

  79. Gu M, Wang X, Toh TB, Chow EK (2018) Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today 23:1043–1052. https://doi.org/10.1016/j.drudis.2017.11.009

    CAS  Article  Google Scholar 

  80. Gupta R, Xie H (2018) Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37:209–230. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009

    Article  Google Scholar 

  81. Hajialyani M, Tewari D, Sobarzo-Sánchez E, Nabavi SM, Farzaei MH, Abdollahi M (2018) Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int J Nanomedicine 13:5023–5043. https://doi.org/10.2147/IJN.S174072

    CAS  Article  Google Scholar 

  82. Han Q, Wang H, Cai S, Liu X, Zhang Y, Yang L, Wang C, Yang R (2018) Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J Mater Chem B 6:1387–1393. https://doi.org/10.1039/C7TB03053C

    CAS  Article  Google Scholar 

  83. Hansen M, Kennedy BK (2016) Does longer lifespan mean longer healthspan? Trends Cell Biol 26:565–568. https://doi.org/10.1016/j.tcb.2016.05.002

    Article  Google Scholar 

  84. Hazzah HA, Farid RM, Nasra MM, Zakaria M, Gawish Y, El-Massik MA, Abdallah OY (2016) A new approach for treatment of precancerous lesions with curcumin solid-lipid nanoparticle-loaded gels: in vitro and clinical evaluation. Drug Deliv 23:1409–1419. https://doi.org/10.3109/10717544.2015.1065524

    CAS  Article  Google Scholar 

  85. Heiss C, Spyridopoulos I, Haendeler J (2018) Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Exp Gerontol 109:108–118. https://doi.org/10.1016/j.exger.2017.06.015

    CAS  Article  Google Scholar 

  86. Heo DN, Ko WK, Moon HJ, Kim HJ, Lee SJ, Lee JB, Bae MS, Yi JK, Hwang YS, Bang JB, Kim EC, Do SH, Kwon IK (2014) Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS Nano 8:12049–12062. https://doi.org/10.1021/nn504329u

    CAS  Article  Google Scholar 

  87. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 11:673–692. https://doi.org/10.2217/nnm.16.5

    CAS  Article  Google Scholar 

  88. Hou CY, Tain YL, Yu HR, Huang LT (2019) The effects of resveratrol in the treatment of metabolic syndrome. Int J Mol Sci 20:E535. https://doi.org/10.3390/ijms20030535

    CAS  Article  Google Scholar 

  89. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A (2018) Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 102:9449–9470. https://doi.org/10.1007/s00253-018-9352-3

    CAS  Article  Google Scholar 

  90. Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127. https://doi.org/10.1007/s13205-014-0214-0

  91. Jeevanandam J, Danquah MK, Debnath S, Meka VS, Chan YS (2015) Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Curr Pharm Biotechno 16:853–870. https://doi.org/10.2174/1389201016666150727120618

    CAS  Article  Google Scholar 

  92. Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49:2906–2913. https://doi.org/10.1016/j.fct.2011.08.006

    CAS  Article  Google Scholar 

  93. Kakkar V, Muppu SK, Chopra K, Kaur IP (2013) Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 85:339–345. https://doi.org/10.1016/j.ejpb.2013.02.005

    CAS  Article  Google Scholar 

  94. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled–release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

    CAS  Article  Google Scholar 

  95. Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK (2018) Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer's disease. Drug Deliv 25:307–320. https://doi.org/10.1080/10717544.2018.1428243

    CAS  Article  Google Scholar 

  96. Kawabata K, Mukai R, Ishisaka A (2015) Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 6:1399–1417. https://doi.org/10.1039/c4fo01178c

    CAS  Article  Google Scholar 

  97. Kermanizadeh A, Powell LG, Stone V, Møller P (2018) Nanodelivery systems and stabilized solid-drug nanoparticles for orally administered medicine: current landscape. Int J Nanomedicine 13:7575–7605. https://doi.org/10.2147/IJN.S177418

    CAS  Article  Google Scholar 

  98. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. J Pharm Sci 9:304–316. https://doi.org/10.1016/j.ajps.2014.05.005

    Article  Google Scholar 

  99. Khan I, Kumar H, Mishra G, Gothwal A, Kesharwani P, Gupta U (2017) Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr Pharm Des 23:5315–5326. https://doi.org/10.2174/1381612823666170829164828

    CAS  Article  Google Scholar 

  100. Kim JT, Barua S, Kim H, Hong SC, Yoo SY, Jeon H, Cho Y, Gil S, Oh K, Lee J (2017) Absorption study of genistein using solid lipid microparticles and nanoparticles: Control of oral bioavailability by particle sizes. Biomol Ther (Seoul) 25:452–459. https://doi.org/10.4062/biomolther.2017.095

    CAS  Article  Google Scholar 

  101. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22:E1445. https://doi.org/10.3390/molecules22091445

    CAS  Article  Google Scholar 

  102. Krishnamoorthy K, Mahalingam M (2015) Selection of a suitable method for the preparation of polymeric nanoparticles: multi–criteria decision making approach. Adv Pharm Bull 5:57–67. https://doi.org/10.5681/apb.2015.008

    CAS  Article  Google Scholar 

  103. Krupkova O, Ferguson SJ, Wuertz-Kozak K (2016) Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 37:1–12. https://doi.org/10.1016/j.jnutbio.2016.01.002

    CAS  Article  Google Scholar 

  104. Kumar A, Ahuja A, Ali J, Baboota S (2010) Conundrum and therapeutic potential of curcumin in drug delivery. Crit Rev Ther Drug Carrier Syst 27:279–312. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i4

    CAS  Article  Google Scholar 

  105. Kumari P, Muddineti O S, Rompicharla SV, Ghanta P, B B N AK, Ghosh B, Biswas S (2017) Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv 24:209–223. https://doi.org/10.1080/10717544.2016.1245365.

  106. Kwon SH, Kim SY, Ha KW, Kang MJ, Huh JS, Im TJ, Kim YM, Park YM, Kang KH, Lee S, Chang JY, Lee J, Choi YW (2007) Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch Pharm Res 30:1138–1143. https://doi.org/10.1007/BF02980249

    CAS  Article  Google Scholar 

  107. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P (2017) Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 9:E46. https://doi.org/10.3390/pharmaceutics9040046

    CAS  Article  Google Scholar 

  108. Lee KZ (2006) Clinical trials of berberine chloride as pharmaceutical agent of type II diabetes. HBTCM 28:38–41. https://doi.org/10.2337/db06-0006

    CAS  Article  Google Scholar 

  109. Lee GH, Lee SJ, Jeong SW, Kim HC, Park GY, Lee SG, Choi JH (2016) Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf B Biointerfaces 143:511–517. https://doi.org/10.1016/j.colsurfb.2016.03.060

    CAS  Article  Google Scholar 

  110. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 8:167. https://doi.org/10.3390/nu8030167

    CAS  Article  Google Scholar 

  111. Li C, Ge X, Wang L (2017a) Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother 86:628–636. https://doi.org/10.1016/j.biopha.2016.12.042

    CAS  Article  Google Scholar 

  112. Li M, Xin M, Guo C, Lin G, Wu X (2017b) New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 43:1846–1857. https://doi.org/10.1080/03639045.2017.1349787

    CAS  Article  Google Scholar 

  113. Li J, Zhang CX, Liu YM, Chen KL, Chen G (2017c) A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction. Oncotarget 8:65717–65729. https://doi.org/10.18632/oncotarget.20084

    Article  Google Scholar 

  114. Li J, Zhou Y, Zhang W, Bao C, Xie Z (2017d) Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles. Colloids Surf B Biointerfaces 153:174–182. https://doi.org/10.1016/j.colsurfb.2017.02.023

    CAS  Article  Google Scholar 

  115. Li T, Liang W, Xiao X, Qian Y (2018) Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int J Nanomedicine 13:7349–7362. https://doi.org/10.2147/IJN.S179678

    CAS  Article  Google Scholar 

  116. Lian B, Wu M, Feng Z, Deng Y, Zhong C, Zhao X (2019) Folate-conjugated human serum albumin-encapsulated resveratrol nanoparticles: preparation, characterization, bioavailability and targeting of liver tumors. Artif Cells Nanomed Biotechnol 47:154–165. https://doi.org/10.1080/21691401.2018.1548468

    CAS  Article  Google Scholar 

  117. Lim H, Park H, Kim HP (2015) Effects of flavonoids on senescence–associated secretory phenotype formation from bleomycin–induced senescence in BJ fibroblasts. Biochem Pharmacol 96:337–348. https://doi.org/10.1016/j.bcp.2015.06.013

    CAS  Article  Google Scholar 

  118. Lim H, Park BK, Shin SY, Kwon YS, Kim HP (2017) Methyl caffeate and some plant constituents inhibit age–related inflammation: effects on senescence–associated secretory phenotype (SASP) formation. Arch Pharm Res 40:524–535. https://doi.org/10.1007/s12272-017-0909-y

    CAS  Article  Google Scholar 

  119. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. JJ Food Drug Anal 25:219–234. https://doi.org/10.1016/j.jfda.2017.02.001

    CAS  Article  Google Scholar 

  120. Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, Sevin E, Fenart L, Gosselet F, Coelho MA, Pereira MC (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer's disease. Molecules 22:E277. https://doi.org/10.3390/molecules22020277

    CAS  Article  Google Scholar 

  121. Luo CF, Yuan M, Chen MS, Liu SM, Zhu L, Huang BY, Liu XW, Xiong W (2011) Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int J Pharm 410:138–144. https://doi.org/10.1016/j.ijpharm.2011.02.064

    CAS  Article  Google Scholar 

  122. Lushchak O, Zayachkivska A, Vaiserman A (2018) Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. Oxid Med Cell Longev 2018:3407375. https://doi.org/10.1155/2018/3407375

    CAS  Article  Google Scholar 

  123. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N (2018) Current concepts of neurodegenerative mechanisms in Alzheimer's disease. Biomed Res Int 2018:3740461. https://doi.org/10.1155/2018/3740461

    CAS  Article  Google Scholar 

  124. Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD (2019) Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev. https://doi.org/10.1002/med.21559

  125. Martín Giménez VM, Kassuha DE, Manucha W (2017) Nanomedicine applied to cardiovascular diseases: latest developments. Ther Adv Cardiovasc Dis 11:133–142. https://doi.org/10.1177/1753944717692293

    CAS  Article  Google Scholar 

  126. Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new "smart-foods" for health. Foods 7:E72. https://doi.org/10.3390/foods7050072

    CAS  Article  Google Scholar 

  127. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochemistry 2013:238428. https://doi.org/10.1155/2013/238428

    CAS  Article  Google Scholar 

  128. Meena R, Kumar S, Kumar R, Gaharwar US, Rajamani P (2017) PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed Pharmacother 94:944–954. https://doi.org/10.1016/j.biopha.2017.07.151

    CAS  Article  Google Scholar 

  129. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196. https://doi.org/10.1016/S0169-409X(01)00105-3

    CAS  Article  Google Scholar 

  130. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603. https://doi.org/10.3390/ijms12095592

    CAS  Article  Google Scholar 

  131. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM (2018) Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics 10:E191. https://doi.org/10.3390/pharmaceutics10040191

    CAS  Article  Google Scholar 

  132. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289. https://doi.org/10.4103/0975-7406.72127

    CAS  Article  Google Scholar 

  133. Monsalve B, Concha-Meyer A, Palomo I, Fuentes E (2017) Mechanisms of endothelial protection by natural bioactive compounds from fruit and vegetables. An Acad Bras Cienc 89:615–633. https://doi.org/10.1590/0001-3765201720160509.

    CAS  Article  Google Scholar 

  134. Montalban MG, Coburn JM, Lozano-Perez AA, Cenis JL, Villora G, Kaplan DL (2018) Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel) 8:E126. https://doi.org/10.3390/nano8020126

    CAS  Article  Google Scholar 

  135. Moss DM, Curley P, Kinvig H, Hoskins C, Owen A (2018) The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol 12:223–236. https://doi.org/10.1080/17474124.2018.1399794

    CAS  Article  Google Scholar 

  136. Muradian K, Vaiserman A, Min KJ, Fraifeld VE (2015) Fucoxanthin and lipid metabolism: A minireview. Nutr Metab Cardiovasc Dis 25:891–897. https://doi.org/10.1016/j.numecd.2015.05.010

    CAS  Article  Google Scholar 

  137. Myers A, Lithgow GJ (2019) Drugs that target aging: how do we discover them? Expert Opin Drug Discov 14:541–548. https://doi.org/10.1080/17460441.2019.1597049

    CAS  Article  Google Scholar 

  138. Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, Park BJ (2013) Korean meta–analysis study group. efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta–analysis of randomised controlled trials. BMJ 346:f10. https://doi.org/10.1136/bmj.f10

  139. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5:305–313. https://doi.org/10.15171/apb.2015.043

    CAS  Article  Google Scholar 

  140. Ni W, Li Z, Liu Z, Ji Y, Wu L, Sun S, Jian X, Gao X (2019) Dual-targeting nanoparticles: codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma. J Pharm Sci 108:1284–1295. https://doi.org/10.1016/j.xphs.2018.10.042

    CAS  Article  Google Scholar 

  141. Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB (2018) Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 36:1633–1648. https://doi.org/10.1016/j.biotechadv.2018.03.014

    CAS  Article  Google Scholar 

  142. Patisaul HB (2017) Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 76:130–144. https://doi.org/10.1017/S0029665116000677

    CAS  Article  Google Scholar 

  143. Perrott KM, Wiley CD, Desprez PY, Campisi J (2017) Apigenin suppresses the senescence–associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience 39:161–173. https://doi.org/10.1007/s11357-017-9970-1

    CAS  Article  Google Scholar 

  144. Piazzini V, Lemmi B, D’Ambrosio M, Cinci L, Luceri C, Bilia AR, Bergonzi MC (2018) Nanostructured lipid carriers as promising delivery systems for plant extracts: The case of silymarin. Appl Sci 8:1163. https://doi.org/10.3390/app8071163

    CAS  Article  Google Scholar 

  145. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P, Jacobson E, Gumbleton T, Oakervee H, Cavenagh J (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160:714–717. https://doi.org/10.1111/bjh.12154

    CAS  Article  Google Scholar 

  146. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H (2019) Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1527. https://doi.org/10.1002/wnan.1527

    CAS  Article  Google Scholar 

  147. Rabinovici GD (2019) Late-onset Alzheimer disease. Continuum (Minneap Minn) 25:14–33. https://doi.org/10.1212/CON.0000000000000700

    Article  Google Scholar 

  148. Rahman M, Beg S, Verma A, Al Abbasi FA, Anwar F, Saini S, Akhter S, Kumar V (2017) Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: challenges and scope of nano/submicromedicine in its effective delivery. J Pharm Pharmacol 69:1–14. https://doi.org/10.1111/jphp.12661

    CAS  Article  Google Scholar 

  149. Ramalingam P, Ko YT (2015) Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res 32:89–402. https://doi.org/10.1007/s11095-014-1469-1

    CAS  Article  Google Scholar 

  150. Ramalingam P, Ko YT (2016) Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces 139:52–61. https://doi.org/10.1016/j.colsurfb.2015.11.050

    CAS  Article  Google Scholar 

  151. Ramalingam P, Yoo SW, Ko YT (2016) Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int 84:113–119. https://doi.org/10.1016/j.foodres.2016.03.031

    CAS  Article  Google Scholar 

  152. Rassu G, Porcu EP, Fancello S, Obinu A, Senes N, Galleri G, Migheli R, Gavini E, Giunchedi P (2018) Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics 11:E8. https://doi.org/10.3390/pharmaceutics11010008

    CAS  Article  Google Scholar 

  153. Rastogi R, Anand S, Koul V (2009) Flexible polymerosomes––an alternative vehicle for topical delivery. Colloids Surf B Biointerfaces 72:161–166. https://doi.org/10.1016/j.colsurfb.2009.03.022

    CAS  Article  Google Scholar 

  154. Ravindran S, Suthar JK, Rokade R, Deshpande P, Singh P, Pratinidhi A, Khambadkhar R, Utekar S (2018) Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr Drug Metab 19:327–334. https://doi.org/10.2174/1389200219666180305154119

    CAS  Article  Google Scholar 

  155. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70. https://doi.org/10.1016/j.jsps.2017.10.012

    Article  Google Scholar 

  156. Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR (2017) Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces 154:123–132. https://doi.org/10.1016/j.colsurfb.2017.03.021

    CAS  Article  Google Scholar 

  157. Rousseaux MWC, Shulman JM, Jankovic J (2017) Progress toward an integrated understanding of Parkinson's disease. F1000Res 6:1121. https://doi.org/10.12688/f1000research.11820.1

    CAS  Article  Google Scholar 

  158. Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675. https://doi.org/10.1016/j.biopha.2018.12.133

    CAS  Article  Google Scholar 

  159. Saha S, Sadhukhan P, Sil PC (2014) Genistein: a phytoestrogen with multifaceted therapeutic properties. Mini Rev Med Chem 14:920–940. https://doi.org/10.2174/1389557514666141029233442

    CAS  Article  Google Scholar 

  160. Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Anil Kumar NV, Martins N, Sharifi-Rad J (2019) The therapeutic potential of curcumin: A review of clinical trials. Eur J Med Chem 163:527–545. https://doi.org/10.1016/j.ejmech.2018.12.016

    CAS  Article  Google Scholar 

  161. Santín-Márquez R, Alarcón-Aguilar A, López-Diazguerrero NE, Chondrogianni N, Königsberg M (2019) Sulforaphane – role in aging and neurodegeneration. Geroscience (In press).

  162. Sarker MR, Franks SF (2018) Efficacy of curcumin for age–associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience 40:73–95. https://doi.org/10.1007/s11357-018-0017-z

    CAS  Article  Google Scholar 

  163. Seals DR, Melov S (2014) Translational geroscience: emphasizing function to achieve optimal longevity. Aging (Albany NY) 6:718–730. https://doi.org/10.18632/aging.100694

    Article  Google Scholar 

  164. Seals DR, Justice JN, LaRocca TJ (2016) Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol 594:2001–2024. https://doi.org/10.1113/jphysiol.2014.282665

    CAS  Article  Google Scholar 

  165. Seca AML, Pinto DCGA (2018) Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar Drugs 16:E237. https://doi.org/10.3390/md16070237

    CAS  Article  Google Scholar 

  166. Shah SMA, Akram M, Riaz M, Munir N, Rasool G (2019) Cardioprotective potential of plant–derived molecules: a scientific and medicinal approach. Dose Response 17:1559325819852243. https://doi.org/10.1177/1559325819852243

    Article  Google Scholar 

  167. Shi M, Shi YL, Li XM, Yang R, Cai ZY, Li QS, Ma SC, Ye JH, Lu JL, Liang YR, Zheng XQ (2018) Food-grade encapsulation systems for (−)-epigallocatechin gallate. Molecules 23:445. https://doi.org/10.3390/molecules23020445

    CAS  Article  Google Scholar 

  168. Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK, Upadhyaya H (2016) Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J Pharm Pharmacol 68:1481–1500. https://doi.org/10.1111/jphp.12611

    CAS  Article  Google Scholar 

  169. Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC, Khan MI, Shabana S, Mousa SA, Mukhtar H (2014) Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine 10:1619–1626. https://doi.org/10.1016/j.nano.2014.05.007

    CAS  Article  Google Scholar 

  170. Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E (2017) Nanobiomaterials' applications in neurodegenerative diseases. J Biomater Appl 31:953–984. https://doi.org/10.1177/0885328216659032

    CAS  Article  Google Scholar 

  171. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821. https://doi.org/10.1016/j.bcp.2011.07.093

    CAS  Article  Google Scholar 

  172. Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA (2018) EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer's disease. Front Aging Neurosci 10:244. https://doi.org/10.3389/fnagi.2018.00244

    CAS  Article  Google Scholar 

  173. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev. https://doi.org/10.1002/med.21565

  174. Siu FY, Ye S, Lin H, Li S (2018) Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomedicine 13:4133–4144. https://doi.org/10.2147/IJN.S164235

    CAS  Article  Google Scholar 

  175. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, Groop PH, Handelsman Y, Insel RA, Mathieu C, McElvaine AT, Palmer JP, Pugliese A, Schatz DA, Sosenko JM, Wilding JP, Ratner RE (2017) Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 66:241–255. https://doi.org/10.2337/db16-0806

    CAS  Article  Google Scholar 

  176. Smoliga JM, Blanchard O (2014) Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules 19:17154–17172. https://doi.org/10.3390/molecules191117154

    CAS  Article  Google Scholar 

  177. Smoliga JM, Vang O, Baur JA (2012) Challenges of translating basic research into therapeutics: resveratrol as an example. J Gerontol A Biol Sci Med Sc 67:158–167. https://doi.org/10.1093/gerona/glr062

    CAS  Article  Google Scholar 

  178. Somu P, Paul S (2019) Supramolecular nanoassembly of lysozyme and α-lactalbumin (apo α-LA) exhibits selective cytotoxicity and enhanced bioavailability of curcumin to cancer cells. Colloids Surf B Biointerfaces 178:297–306. https://doi.org/10.1016/j.colsurfb.2019.03.016

    CAS  Article  Google Scholar 

  179. Stolarczyk EU, Stolarczyk K, Łaszcz M, Kubiszewski M, Maruszak W, Olejarz W, Bryk D (2017) Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur J Pharm Sci 96:176–185 https://www.ncbi.nlm.nih.gov/pubmed/27644892

    CAS  Article  Google Scholar 

  180. Sunagawa Y, Wada H, Suzuki H, Sasaki H, Imaizumi A, Fukuda H, Hashimoto T, Katanasaka Y, Shimatsu A, Kimura T, Kakeya H, Fujita M, Hasegawa K, Morimoto T (2012) A novel drug delivery system of oral curcumin markedly improves efficacy of treatment for heart failure after myocardial infarction in rats. Biol Pharm Bull 35:139–144. https://doi.org/10.1248/bpb.35.139

    CAS  Article  Google Scholar 

  181. Sundar DKS, Houreld NN, Abrahamse H (2018) Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules 23:E835. https://doi.org/10.3390/molecules23040835

    CAS  Article  Google Scholar 

  182. Tan ME, He CH, Jiang W, Zeng C, Yu N, Huang W, Gao ZG, Xing JG (2017) Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats. Int J Nanomedicine 12:253–3265. https://doi.org/10.2147/IJN.S131893

    Article  Google Scholar 

  183. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age–related diseases. Front Pharmacol 9:1162. https://doi.org/10.3389/fphar.2018.01162

    Article  Google Scholar 

  184. Tang P, Sun Q, Yang H, Tang B, Pu H, Li H (2018) Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. Int J Pharm 545:74–83. https://doi.org/10.1016/j.ijpharm.2018.04.060

    CAS  Article  Google Scholar 

  185. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI (2018) Blood-brain delivery methods using nanotechnology. Pharmaceutics 10:269. https://doi.org/10.3390/pharmaceutics10040269

    CAS  Article  Google Scholar 

  186. Tsai YM, Jan WC, Chien CF, Lee WC, Lin LC, Tsai TH (2011) Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem 127:918–925. https://doi.org/10.1016/j.foodchem.2011.01.059

    CAS  Article  Google Scholar 

  187. Tuguntaev RG, Okeke CI, Xu J, Li C, Wang PC, Liang XJ (2016) Nanoscale polymersomes as anti–cancer drug carriers applied for pharmaceutical delivery. Curr Pharm Des 22:2857–2865. https://doi.org/10.2174/1381612822666160217142319

    CAS  Article  Google Scholar 

  188. Ullah F, Liang A, Rangel A, Gyengesi E, Niedermayer G, Münch G (2017) High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch Toxicol 91:1623–1634. https://doi.org/10.1007/s00204-017-1939-4

    CAS  Article  Google Scholar 

  189. Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P, Csiszar A (2018a) Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 15:555–565. https://doi.org/10.1038/s41569-018-0030-z

    CAS  Article  Google Scholar 

  190. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A (2018b) Mechanisms of vascular aging. Circ Res 123:849–867. https://doi.org/10.1161/CIRCRESAHA.118.311378

    CAS  Article  Google Scholar 

  191. Vaiserman A, Lushchak O (2017) Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives. J Transl Med 15:160. https://doi.org/10.1186/s12967-017-1259-8

    CAS  Article  Google Scholar 

  192. Vaiserman AM, Marotta F (2016) Longevity-promoting pharmaceuticals: is it a time for implementation? Trends Pharmacol Sci 37:331–333. https://doi.org/10.1016/j.tips.2016.02.003

    CAS  Article  Google Scholar 

  193. van der Vlies AJ, Morisaki M, Neng HI, Hansen EM, Hasegawa U (2019) Framboidal nanoparticles containing a curcumin-phenylboronic acid complex with antiangiogenic and anticancer activities. Bioconjug Chem 30:861–870. https://doi.org/10.1021/acs.bioconjchem.9b00006

    CAS  Article  Google Scholar 

  194. van Onna M, Boonen A (2016) The challenging interplay between rheumatoid arthritis, ageing and comorbidities. BMC Musculoskelet Disord 17:184. https://doi.org/10.1186/s12891-016-1038-3

    CAS  Article  Google Scholar 

  195. Vijayakumar A, Baskaran R, Jang YS, Oh SH, Yoo BK (2016) Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 18:875–883. https://doi.org/10.1208/s12249-016-0573-4

    CAS  Article  Google Scholar 

  196. Vivekanantham S, Shah S, Dewji R, Dewji A, Khatri C, Ologunde R (2015) Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. Int J Neurosci 125:717–725. https://doi.org/10.3109/00207454.2014.982795

    CAS  Article  Google Scholar 

  197. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y (2012) Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Int J Pharm 430:238–246. https://doi.org/10.1016/j.ijpharm.2012.03.027

    CAS  Article  Google Scholar 

  198. Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, Wang Y, Chen M (2014a) Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech 15:834–844. https://doi.org/10.1208/s12249-014-0112-0

    CAS  Article  Google Scholar 

  199. Wang L, Wang S, Chen R, Wang Y, Li H, Wang Y, Chen M (2014b) Oridonin loaded solid lipid nanoparticles enhanced antitumor activity in MCF-7 cells. J Nanomater 2014:903646. https://doi.org/10.1155/2014/903646

    CAS  Article  Google Scholar 

  200. Wang J, Wang H, Zhu R, Liu Q, Fei J, Wang S (2015a) Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1b transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials 53:475–483. https://doi.org/10.1016/j.biomaterials.2015.02.116

    CAS  Article  Google Scholar 

  201. Wang J, Ma W, Tu P (2015b) Synergistically improved anti-tumor efficacy by co-delivery doxorubicin and curcumin polymeric micelles. Macromol Biosci 15:1252–1261. https://doi.org/10.1002/mabi.201500043

    CAS  Article  Google Scholar 

  202. Wang L, Wang W, Rui Z, Zhou D (2016) The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv 23:3200–3208. https://doi.org/10.3109/10717544.2016.1162875

    CAS  Article  Google Scholar 

  203. Wang W, Zhang L, Chen T, Guo W, Bao X, Wang D, Ren B, Wang H, Li Y, Wang Y, Chen S, Tang B, Yang Q, Chen C (2017) Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules 22:E1814. https://doi.org/10.3390/molecules22111814

    CAS  Article  Google Scholar 

  204. Wang W, Chen T, Xu H, Ren B, Cheng X, Qi R, Liu H, Wang Y, Yan L, Chen S, Yang Q, Chen C (2018a) Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 23:E1578. https://doi.org/10.3390/molecules23071578

    CAS  Article  Google Scholar 

  205. Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, Zhao L, Zhang W (2018b) Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol 14:1486–1495. https://doi.org/10.1166/jbn.2018.2596

    CAS  Article  Google Scholar 

  206. Wojcik M, Krawczyk M, Wojcik P, Cypryk K, Wozniak LA (2018) Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer. Oxid Med Cell Longev 2018:9698258. https://doi.org/10.1155/2018/9698258

    CAS  Article  Google Scholar 

  207. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z (2019) Review of current strategies for delivering Alzheimer's disease drugs across the blood-brain barrier. Int J Mol Sci 20:E381. https://doi.org/10.3390/ijms20020381

    CAS  Article  Google Scholar 

  208. World Health Organisation (2012) World health statistics. http://www.who.int/gho/publications/world_health_statistics/2012/en/.

  209. Wu YR, Choi HJ, Kang YG, Kim JK, Shin JW (2017) In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. Int J Nanomedicine 12:7007–7013. https://doi.org/10.2147/IJN.S146296

    CAS  Article  Google Scholar 

  210. Xu H, Jia F, Singh PK, Ruan S, Zhang H, Li X (2016) Synergistic anti-glioma effect of a coloaded nano-drug delivery system. Int J Nanomedicine 12:29–40. https://doi.org/10.2147/IJN.S116367

    Article  Google Scholar 

  211. Xue M, Yang MX, Zhang W, Li XM, Gao DH, Ou ZM, Li ZP, Liu SH, Li XJ, Yang SY (2013) Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomedicine 8:4677–4687. https://doi.org/10.2147/IJN.S51262

    CAS  Article  Google Scholar 

  212. Xue M, Zhang L, Yang MX, Zhang W, Li XM, Ou ZM, Li ZP, Liu SH, Li XJ, Yang SY (2015) Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 10:5049–5057. https://doi.org/10.2147/IJN.S84565

    CAS  Article  Google Scholar 

  213. Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S (2018) Advances and challenges in geroscience research: An update. Physiol Int 105:298–308. https://doi.org/10.1556/2060

    CAS  Article  Google Scholar 

  214. Yan J, Wang Y, Zhang X, Liu S, Tian C, Wang H (2016) Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv 23:1757–1762. https://doi.org/10.3109/10717544.2015.1069423

    CAS  Article  Google Scholar 

  215. Yang X, Li Z, Wang N, Li L, Song L, He T, Sun L, Wang Z, Wu Q, Luo N, Yi C, Gong C (2015) Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci Rep 5:10322. https://doi.org/10.1038/srep10322

    CAS  Article  Google Scholar 

  216. Yusuf M, Khan M, Khan RA, Ahmed B (2012) Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21:300–311. https://doi.org/10.3109/1061186X.2012.747529

    CAS  Article  Google Scholar 

  217. Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18:3229–3241. https://doi.org/10.1158/1078-0432.CCR-11-2938

    CAS  Article  Google Scholar 

  218. Zeng L, Yan J, Luo L, Ma M, Zhu H (2017) Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci Rep 7:45521

    CAS  Article  Google Scholar 

  219. Zhang G, Zhang J (2018) Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: characterization and in vivo investigation on nephrotic syndrome rats. Drug Des Devel Ther 12:2509–2518. https://doi.org/10.2147/DDDT.S172919

    CAS  Article  Google Scholar 

  220. Zhang Y, Yu J, Qiang L, Gu Z (2018) Nanomedicine for obesity treatment. Sci China Life Sci 61:373–379. https://doi.org/10.1007/s11427-017-9257-1

    CAS  Article  Google Scholar 

  221. Zhang D, Zhang J, Zeng J, Li Z, Zuo H, Huang C, Zhao X (2019) Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J Biomed Nanotechnol 15:288–300. https://doi.org/10.1166/jbn.2019.2682

    CAS  Article  Google Scholar 

  222. Zheng X, Zhang F, Shao D, Zhang Z, Cui L, Zhang J, Dawulieti J, Meng Z, Zhang M, Chen L (2018) Gram-scale production of carrier-free fluorescent berberine microrods for selective liver cancer therapy. Biofactors 44:496–502. https://doi.org/10.1002/biof.1450

    CAS  Article  Google Scholar 

  223. Zhou Y, Du J, Wang L, Wang Y (2017) Nanocrystals technology for improving bioavailability of poorly soluble drugs: a mini–review. J Nanosci Nanotechnol 17:18–28. https://doi.org/10.1166/jnn.2017.13108

    CAS  Article  Google Scholar 

  224. Zhu B, Yu L, Yue Q (2017) Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed Pharmacother 91:287–294. https://doi.org/10.1016/j.biopha.2017.02.112

    CAS  Article  Google Scholar 

  225. Zhu F, Du B, Xu B (2018) Anti–inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit Rev Food Sci Nutr 58:1260–1270. https://doi.org/10.1080/10408398.2016.1251390

    CAS  Article  Google Scholar 

  226. Zierer J, Menni C, Kastenmüller G, Spector TD (2015) Integration of 'omics' data in aging research: from biomarkers to systems biology. Aging Cell 14:933–944. https://doi.org/10.1111/acel.12386

    CAS  Article  Google Scholar 

Download references

Funding

The work was partially supported by the Science and Technology Center in Ukraine (#6274) to OL and by Natural Sciences and Engineering Research Council of Canada (#6793) to KBS.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Oleh Lushchak or Alexander Vaiserman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statements

This is a review article. It has not involved any human subjects and animal experiments.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lushchak, O., Strilbytska, O., Koliada, A. et al. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. GeroScience 42, 117–139 (2020). https://doi.org/10.1007/s11357-019-00116-9

Download citation

Keywords

  • Aging
  • Age-associated disorder
  • Phytobioactive compound
  • Bioavailability
  • Nanoparticle
  • Antioxidant
  • Anti-inflammatory activity