Advertisement

GeroScience

, Volume 40, Issue 2, pp 193–199 | Cite as

Correlations between age, functional status, and the senescence-associated proteins HMGB2 and p16INK4a

  • Ibiyonu Lawrence
  • Michael Bene
  • Timothy Nacarelli
  • Ashley Azar
  • Justin Z. Cohen
  • Claudio Torres
  • Gregg Johannes
  • Christian Sell
Original Article

Abstract

Cellular senescence is a central component of the aging process. This cellular response has been found to be induced by multiple forms of molecular damage and senescent cells increase in number with age in all tissues examined to date. We have examined the correlation with age of two key proteins involved in the senescence program, p16INK4a and HMGB2. These proteins are involved in cell cycle arrest and chromatin remodeling during senescence. Circulating levels of these markers increases with age and correlates with functional status. The levels of HMGB2 appear to be significantly correlated with functional status, whereas p16INK4a levels are more weakly associated. Interestingly, there is a strong correlation between the two proteins independent of age. In particular, a single high-functioning individual over 90 years of age displays a disproportionately low level of HGMB2. The results suggest that with improved testing methodology, it may be possible to monitor circulating protein markers of senescence in human populations.

Keywords

Aging Senescence p16 HMGB2 Cognition Frailty Biomarker Chromatin 

References

  1. Aird KM, Iwasaki O, Kossenkov AV, Tanizawa H, Fatkhutdinov N, Bitler BG, le L, Alicea G, Yang TL, Johnson FB, Noma KI, Zhang R (2016) HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J Cell Biol 215(3):325–334CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15(5):496–506CrossRefPubMedGoogle Scholar
  4. Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, Beausejour CM, Coppe JP, Rodier F, Campisi J (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201(4):613–629CrossRefPubMedPubMedCentralGoogle Scholar
  5. He S, Sharpless NE (2017) Senescence in health and disease. Cell 169(6):1000–1011CrossRefPubMedGoogle Scholar
  6. Lu T, Finkel T (2008) Free radicals and senescence. Exp Cell Res 314(9):1918–1922CrossRefPubMedPubMedCentralGoogle Scholar
  7. Maas BM, Francis O, Mollan KR, Lee C, Cottrell ML, Prince HMA, Sykes C, Trezza C, Torrice C, White N, Malone S, Hudgens MG, Sharpless NE, Dumond JB (2016) Concentrations of pro-inflammatory cytokines are not associated with senescence marker p16INK4a or predictive of intracellular emtricitabine/tenofovir metabolite and endogenous nucleotide exposures in adults with HIV infection. PLoS One 11(12):e0168709CrossRefPubMedPubMedCentralGoogle Scholar
  8. Nacarelli T, Sell C (2017) Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol 455:83–92CrossRefPubMedGoogle Scholar
  9. Nacarelli T, Azar A, Sell C (2016) Mitochondrial stress induces cellular senescence in an mTORC1-dependent manner. Free Radic Biol Med 95:133–154CrossRefPubMedGoogle Scholar
  10. Niedernhofer LJ, Kirkland JL, Ladiges W (2017) Molecular pathology endpoints useful for aging studies. Ageing Res Rev 35:241–249CrossRefPubMedGoogle Scholar
  11. Sanoff HK, Deal AM, Krishnamurthy J et al (2014) Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst 106(4):dju057CrossRefPubMedPubMedCentralGoogle Scholar
  12. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195CrossRefPubMedGoogle Scholar
  13. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941CrossRefPubMedGoogle Scholar
  14. Thomas JO (2001) HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans 29(Pt 4):395–401CrossRefPubMedGoogle Scholar
  15. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126(1):111–117CrossRefGoogle Scholar
  16. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190CrossRefPubMedPubMedCentralGoogle Scholar
  17. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL (2014) Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 17(4):324–328CrossRefPubMedGoogle Scholar

Copyright information

© American Aging Association 2018

Authors and Affiliations

  1. 1.Department of MedicineDrexel University College of MedicinePhiladelphiaUSA
  2. 2.University of Texas San AntonioSan AntonioUSA
  3. 3.Department of PathologyDrexel University College of MedicinePhiladelphiaUSA
  4. 4.The Wistar InstitutePhiladelphiaUSA
  5. 5.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations