Skip to main content

Advertisement

Log in

Characterization of skeletal alterations in a model of prematurely aging mice

  • Published:
AGE Aims and scope Submit manuscript

Abstract

An age-related bone loss occurs, apparently associated with the concomitant increase in an oxidative stress situation. However, the underlying mechanisms of age-related osteopenia are ill defined since these studies are time consuming and require the use of many animals (mainly rodents). Here, we aimed to characterize for the first time the bone status of prematurely aging mice (PAM), which exhibit an increased oxidative stress. Tibiae from adult (6 months) PAM show an increase in bone mineral density (BMD) and bone mineral content (assessed by bone densitometry) versus those in their normal counterparts (non-prematurely aging mice, NPAM) and similarly decreased in both kinds of mouse with age. However, at this bone site, trabecular BMD (determined by μ-computerized tomography) was similar in both adult PAM and old (18 months) NPAM. Femurs from these groups of mice present an increase in oxidative stress, inflammation, osteoclastogenic, and adipogenic markers, but a decrease in the gene expression of osteoblastic differentiation markers and of the Wnt/β-catenin pathway. Our findings show that adult PAM recapitulate various age-related bone features, and thus are a suitable model for premature bone senescence studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC (2007a) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282:27298–27305

    Article  CAS  Google Scholar 

  • Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007b) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    Article  CAS  Google Scholar 

  • Alvarado C, Alvarez P, Puerto M, Gausseres N, Jimenez L, De la Fuente M (2006) Dietary supplementation with antioxidants improves functions and decreases oxidative stress of leukocytes from prematurely aging mice. Nutrition 22:767–777

    Article  CAS  Google Scholar 

  • Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207

    Article  CAS  Google Scholar 

  • Banerjee C, McCabe LR, Choi JY, Hiebert SW, Stein JL, Stein GS, Lian JB (1997) Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem 66:1–8

    Article  CAS  Google Scholar 

  • Banu J, Wang L, Kalu DN (2002) Age-related changes in bone mineral content and density in intact male F344 rats. Bone 30:125–130

    Article  CAS  Google Scholar 

  • Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5:73–80

    Article  Google Scholar 

  • Bar-Shira-Maymon B, Coleman R, Cohen A, Steinhagen-Thiessen E, Silbermann M (1989) Age-related bone loss in lumbar vertebrae of CW-1 female mice: a histomorphometric study. Calcif Tissue Int 44:36–45

    Article  CAS  Google Scholar 

  • Bellido M, Lugo L, Roman-Blas JA, Castaneda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont G (2011) Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 12:R152

    Article  Google Scholar 

  • Bisello A, Horwitz MJ, Stewart AF (2004) Parathyroid hormone-related protein: an essential physiological regulator of adult bone mass. Endocrinology 145:3551–3553

    Article  CAS  Google Scholar 

  • Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20:1659–1668

    Article  CAS  Google Scholar 

  • Clowes JA, Peel N, Eastell R (2001) Glucocorticoid-induced osteoporosis. Curr Opin Rheumatol 13:326–332

    Article  CAS  Google Scholar 

  • Cooper C, Melton LJ 3rd (1992) Epidemiology of osteoporosis. Trends Endocrinol Metabol 3:224–229

    Article  CAS  Google Scholar 

  • de Castro LF, Lozano D, Dapia S, Portal-Nunez S, Caeiro JR, Gomez-Barrena E, Esbrit P (2010) Role of the N- and C-terminal fragments of parathyroid-hormone-related protein as putative therapies to improve bone regeneration under high glucocorticoid treatment. Tissue Eng Part A 16:1157–1168

    Article  Google Scholar 

  • De la Fuente M (2010) Murine models of premature ageing for the study of diet-induced immune changes: improvement of leucocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants. Proc Nutr Soc 69:651–659

    Article  Google Scholar 

  • De la Fuente M, Gimenez-Llort L (2010) Models of aging of neuroimmunomodulation: strategies for its improvement. Neuroimmunomodulation 17:213–216

    Article  Google Scholar 

  • De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026

    Article  Google Scholar 

  • De la Fuente M, Hernanz A, Medina S, Guayerbas N, Fernandez B, Viveros MP (2003) Characterization of monoaminergic systems in brain regions of prematurely ageing mice. Neurochem Int 43:165–172

    Article  Google Scholar 

  • Deschaseaux F, Sensebe L, Heymann D (2009) Mechanisms of bone repair and regeneration. Trends Mol Med 15:417–429

    Article  CAS  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326

    Article  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  CAS  Google Scholar 

  • Fedi P, Bafico A, Nieto Soria A, Burgess WH, Miki T, Bottaro DP, Kraus MH, Aaronson SA (1999) Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem 274:19465–19472

    Article  CAS  Google Scholar 

  • Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  CAS  Google Scholar 

  • Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  CAS  Google Scholar 

  • Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6 J mice. J Bone Miner Res 22:1197–1207

    Article  Google Scholar 

  • Guayerbas N, De La Fuente M (2003) An impairment of phagocytic function is linked to a shorter life span in two strains of prematurely aging mice. Dev Comp Immunol 27:339–350

    Article  CAS  Google Scholar 

  • Guayerbas N, Puerto M, Victor VM, Miquel J, De la Fuente M (2002) Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol 37:249–256

    Article  CAS  Google Scholar 

  • Halloran BP, Ferguson VL, Simske SJ, Burghardt A, Venton LL, Majumdar S (2002) Changes in bone structure and mass with advancing age in the male C57BL/6 J mouse. J Bone Miner Res 17:1044–1050

    Article  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  Google Scholar 

  • Hoogeboom D, Essers MA, Polderman PE, Voets E, Smits LM, Burgering BM (2008) Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J Biol Chem 283:9224–9230

    Article  CAS  Google Scholar 

  • Jilka RL, O’Brien CA, Bartell SM, Weinstein RS, Manolagas SC (2010) Continuous elevation of PTH increases the number of osteoblasts via both osteoclast-dependent and -independent mechanisms. J Bone Miner Res 25:2427–2437

    Article  CAS  Google Scholar 

  • Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428

    Article  CAS  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  CAS  Google Scholar 

  • Kulinsky VI (2007) Biochemical aspects of inflammation. Biochemistry (Mosc) 72:595–607

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lozano D, de Castro LF, Dapia S, Andrade-Zapata I, Manzarbeitia F, Alvarez-Arroyo MV, Gomez-Barrena E, Esbrit P (2009) Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology 150:2027–2035

    Article  CAS  Google Scholar 

  • Lozano D, Fernandez-de-Castro L, Portal-Nunez S, Lopez-Herradon A, Dapia S, Gomez-Barrena E, Esbrit P (2011) The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia. Br J Pharmacol 162:1424–1438

    Article  CAS  Google Scholar 

  • Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    Article  CAS  Google Scholar 

  • Martinez P, Esbrit P, Rodrigo A, Alvarez-Arroyo MV, Martinez ME (2002) Age-related changes in parathyroid hormone-related protein and vascular endothelial growth factor in human osteoblastic cells. Osteoporos Int 13:874–881

    Article  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  CAS  Google Scholar 

  • Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  CAS  Google Scholar 

  • NIH Consensus Development Panel (2001) Osteoporosis prevention, diagnosis, and therapy. Jama 285:785–795

    Article  Google Scholar 

  • NIH Consensus Panel (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  • Nuche-Berenguer B, Lozano D, Gutierrez-Rojas I, Moreno P, Marinoso ML, Esbrit P, Villanueva-Penacarrillo ML (2011) GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. J Endocrinol 209:203–210

    Article  CAS  Google Scholar 

  • Perez-Alvarez L, Baeza I, Arranz L, Marco EM, Borcel E, Guaza C, Viveros MP, De la Fuente M (2005) Behavioral, endocrine and immunological characteristics of a murine model of premature aging. Dev Comp Immunol 29:965–976

    Article  CAS  Google Scholar 

  • Pockwinse SM, Wilming LG, Conlon DM, Stein GS, Lian JB (1992) Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblast cultures. J Cell Biochem 49:310–323

    Article  CAS  Google Scholar 

  • Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9

    Article  Google Scholar 

  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953

    Article  CAS  Google Scholar 

  • Runge M, Hunter G (2006) Determinants of musculoskeletal frailty and the risk of falls in old age. J Musculoskelet Neuronal Interact 6:167–173

    CAS  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96:5522–5527

    Article  CAS  Google Scholar 

  • Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  CAS  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534

    Article  CAS  Google Scholar 

  • Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878

    Article  CAS  Google Scholar 

  • Urs S, Harrington A, Liaw L, Small D (2006) Selective expression of an aP2/fatty acid binding protein 4-Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res 15:647–653

    Article  CAS  Google Scholar 

  • Viveros MP, Fernandez B, Guayerbas N, De la Fuente M (2001) Behavioral characterization of a mouse model of premature immunosenescence. J Neuroimmunol 114:80–88

    Article  CAS  Google Scholar 

  • Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M (2007) A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation 14:157–162

    Article  CAS  Google Scholar 

  • Wang L, Banu J, McMahan CA, Kalu DN (2001) Male rodent model of age-related bone loss in men. Bone 29:141–148

    Article  CAS  Google Scholar 

  • Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276

    Article  CAS  Google Scholar 

  • Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3:151–158

    Article  CAS  Google Scholar 

  • Zhang W, Deng ZL, Chen L, Zuo GW, Luo Q, Shi Q, Zhang BQ, Wagner ER, Rastegar F, Kim SH, Jiang W, Shen J, Huang E, Gao Y, Gao JL, Zhou JZ, Luo J, Huang J, Luo X, Bi Y, Su Y, Yang K, Liu H, Luu HH, Haydon RC, He TC, He BC (2010) Retinoic acids potentiate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One 5:e11917

    Article  Google Scholar 

Download references

Acknowledgments

We thank Elena Andrés [Molecular Imaging Unit, Centro Nacional de Investigaciones Oncológicas (CNIO)] for her technical assistance with μCT measurements. This study was supported by grants from Instituto de Salud Carlos III (PI080922, PI11/00449, RETICEF-RD06/0013/1002, and RETICEF-RD06/0013/0003), Spanish Ministerio de Ciencia e Innovación (MCINN) (BFU2008-04336), and Fundación de Investigación Médica Mutua Madrileña. S.P-N. and D.L. are recipients of a research contract from RETICEF (RD06/0013/1002) and Comunidad Autónoma de Madrid (S-2009/Mat-1472), respectively. A.A. is an associate researcher from CIBERDEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Portal-Núñez.

About this article

Cite this article

Portal-Núñez, S., Manassra, R., Lozano, D. et al. Characterization of skeletal alterations in a model of prematurely aging mice. AGE 35, 383–393 (2013). https://doi.org/10.1007/s11357-011-9372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9372-8

Keywords

Navigation