Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition

Abstract

Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Borneo using static flux chambers. The main emitted monoterpenes were α-pinene, β-pinene and d-limonene. The amount of litter present was the strongest indicator for higher monoterpene fluxes. Mean α-pinene fluxes were around 2.5–3.5 μg C m−2 h−1 from the forest floor with occasional fluxes exceeding 100 μg C m−2 h−1. Fluxes from the oil palm plantation, where hardly any litter was present, were lower (on average 0.5–2.9 μg C m−2 h−1) and only higher when litter was present. All other measured monoterpenes were emitted at lower rates. No seasonal trends could be identified for all monoterpenes and mean fluxes from both forest and plantation floor were ~ 100 times smaller than canopy emission rates reported in the literature. Occasional spikes of higher emissions from the forest floor, however, warrant further investigation in terms of underlying processes and their contribution to regional scale atmospheric fluxes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The dataset used in the present study has been published as Drewer, Julia, Leduning, Melissa, Sentian, Justin, and Skiba, Ute. (2020). Soil VOC emission rates and associated parameters from forest and oil palm in the SAFE landscape [Data set] Zenodo: https://doi.org/10.5281/zenodo.3698115.

References

  1. Aaltonen H et al (2011) Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agric For Meteorol 151:682–691. https://doi.org/10.1016/j.agrformet.2010.12.010

    Article  Google Scholar 

  2. Albers CN, Kramshøj M, Rinnan R (2018) Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils. Biogeosciences 15:3591–3601. https://doi.org/10.5194/bg-15-3591-2018

    CAS  Article  Google Scholar 

  3. Alves EG et al (2016) Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia. Atmos Chem Phys 16:3903–3925. https://doi.org/10.5194/acp-16-3903-2016

    CAS  Article  Google Scholar 

  4. Asensio D, Peñuelas J, Ogaya R, Llusià J (2007) Seasonal soil and leaf CO2 exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmos Environ 41:2447–2455. https://doi.org/10.1016/j.atmosenv.2006.05.008

    CAS  Article  Google Scholar 

  5. Asensio D, Peñuelas J, Prieto P, Estiarte M, Filella I, Llusià J (2008) Interannual and seasonal changes in the soil exchange rates of monoterpenes and other VOCs in a Mediterranean shrubland. Eur J Soil Sci 59:878–891. https://doi.org/10.1111/j.1365-2389.2008.01057.x

    CAS  Article  Google Scholar 

  6. Asensio D, Yuste JC, Mattana S, Ribas À, Llusià J, Peñuelas J (2012) Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant Soil 360:163–174. https://doi.org/10.1007/s11104-012-1220-9

    CAS  Article  Google Scholar 

  7. Bourtsoukidis E, Behrendt T, Yañez-Serrano AM, Hellén H, Diamantopoulos E, Catão E, Ashworth K, Pozzer A, Quesada CA, Martins DL, Sá M, Araujo A, Brito J, Artaxo P, Kesselmeier J, Lelieveld J, Williams J (2018) Strong sesquiterpene emissions from Amazonian soils. Nat Commun 9:2226. https://doi.org/10.1038/s41467-018-04658-y

    CAS  Article  Google Scholar 

  8. Carrión O, Gibson L, Elias DMO, McNamara NP, van Alen TA, op den Camp HJM, Supramaniam CV, McGenity TJ, Murrell JC (2020) Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation. Microbiome 8:81. https://doi.org/10.1186/s40168-020-00860-7

    Article  Google Scholar 

  9. Drewer J, Leduning M, Sentian J, Skiba U (2020a) Soil VOC emission rates and associated parameters from forest and oil palm in the SAFE landscape. Zenodo. https://doi.org/10.5281/zenodo.3698115

  10. Drewer J et al (2020b) Comparison of greenhouse gas fluxes and microbial communities from tropical forest and adjacent oil palm plantations on mineral soil. Biogeosci Discuss 2020:1–55. https://doi.org/10.5194/bg-2020-297

    Article  Google Scholar 

  11. Drewer J, Yamulki S, Leeson SR, Anderson M, Perks MP, Skiba UM, McNamara NP (2017) Difference in soil methane (CH4) and nitrous oxide (N2O) fluxes from bioenergy crops SRC willow and SRF scots pine compared with adjacent arable and fallow in a temperate climate. Bioenergy Res 10:575–582. https://doi.org/10.1007/s12155-017-9824-9

    CAS  Article  Google Scholar 

  12. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, Kapos V, Reynolds G, Sinun W, Snaddon JL, Turner EC (2011) A large-scale forest fragmentation experiment: the stability of altered forest ecosystems project. Philos Trans R Soc B: Biol Sci 366:3292–3302. https://doi.org/10.1098/rstb.2011.0049

    Article  Google Scholar 

  13. Fowler D et al (2011) Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. Philos Trans R Soc Lond B: Biol Sci 366:3196–3209. https://doi.org/10.1098/rstb.2011.0055

    CAS  Article  Google Scholar 

  14. Gaveau DLA, Sheil D, Husnayaen SMA, Arjasakusuma S, Ancrenaz M, Pacheco P, Meijaard E (2016) Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci Rep 6:32017. https://doi.org/10.1038/srep32017

    CAS  Article  Google Scholar 

  15. https://www.nature.com/articles/srep32017#supplementary-information

  16. Global Forest Watch (2018) World Resources Institute. www.globalforestwatch.org.

  17. Gray CM, Monson RK, Fierer N (2010) Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res Biogeosci 115. https://doi.org/10.1029/2010jg001291

  18. Greenberg JP, Asensio D, Turnipseed A, Guenther AB, Karl T, Gochis D (2012) Contribution of leaf and needle litter to whole ecosystem BVOC fluxes. Atmos Environ 59:302–311. https://doi.org/10.1016/j.atmosenv.2012.04.038

    CAS  Article  Google Scholar 

  19. Guenther A (2002) The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–844. https://doi.org/10.1016/s0045-6535(02)00384-3

    CAS  Article  Google Scholar 

  20. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J Geophys Res Atmos 98:12609–12617. https://doi.org/10.1029/93jd00527

    Article  Google Scholar 

  21. Hallquist M et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236. https://doi.org/10.5194/acp-9-5155-2009

    CAS  Article  Google Scholar 

  22. Hayward S, Muncey RJ, James AE, Halsall CJ, Hewitt CN (2001) Monoterpene emissions from soil in a Sitka spruce forest. Atmos Environ 35:4081–4087. https://doi.org/10.1016/S1352-2310(01)00213-8

    CAS  Article  Google Scholar 

  23. Helin A, Hakola H, Hellén H (2020) Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes. Atmos Meas Tech 13:3543–3560. https://doi.org/10.5194/amt-13-3543-2020

    CAS  Article  Google Scholar 

  24. Hellén H, Hakola H, Pystynen KH, Rinne J, Haapanala S (2006) C2-C10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences 3:167–174. https://doi.org/10.5194/bg-3-167-2006

    Article  Google Scholar 

  25. Hewitt CN et al (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc Natl Acad Sci 106:18447–18451. https://doi.org/10.1073/pnas.0907541106

    Article  Google Scholar 

  26. Jardine AB et al (2015) Highly reactive light-dependent monoterpenes in the Amazon. Geophys Res Lett 42:1576–1583. https://doi.org/10.1002/2014gl062573

    CAS  Article  Google Scholar 

  27. Karl T, Guenther A, Yokelson RJ, Greenberg J, Potosnak M, Blake DR, Artaxo P (2007) The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J Geophys Res Atmos 112. https://doi.org/10.1029/2007jd008539

  28. Kerdraon D, Drewer J, Chung AYC, Majalap N, Slade EM, Bréchet L, Wallwork A, Castro-Trujillo B, Sayer EJ (2020) Litter inputs, but not litter diversity, maintain soil processes in degraded tropical forests—a cross-continental comparison. Front For Glob Chang 2. https://doi.org/10.3389/ffgc.2019.00090

  29. Kesselmeier J et al (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob Biogeochem Cycles 16:73-71–73-79. https://doi.org/10.1029/2001gb001813

    Article  Google Scholar 

  30. Kesselmeier J et al (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmos Environ 34:4063–4072. https://doi.org/10.1016/S1352-2310(00)00186-2

    CAS  Article  Google Scholar 

  31. Kuhn U et al (2007) Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmos Chem Phys 7:2855–2879. https://doi.org/10.5194/acp-7-2855-2007

    CAS  Article  Google Scholar 

  32. Kuhn U et al (2004) Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species. Glob Chang Biol 10:663–682. https://doi.org/10.1111/j.1529-8817.2003.00771.x

    Article  Google Scholar 

  33. Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM (2013) Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Appl Environ Microbiol 79:7290–7297. https://doi.org/10.1128/aem.02541-13

    CAS  Article  Google Scholar 

  34. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636. https://doi.org/10.1016/j.soilbio.2008.01.018

    CAS  Article  Google Scholar 

  35. Lin C, Owen SM, Peñuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960. https://doi.org/10.1016/j.soilbio.2006.11.007

    CAS  Article  Google Scholar 

  36. Mäki M, Aaltonen H, Heinonsalo J, Hellén H, Pumpanen J, Bäck J (2019) Boreal forest soil is a significant and diverse source of volatile organic compounds. Plant Soil 441:89–110. https://doi.org/10.1007/s11104-019-04092-z

    CAS  Article  Google Scholar 

  37. Misztal P et al (2011) Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos Chem Phys 11:8995–9017. https://doi.org/10.5194/acp-11-8995-2011

    CAS  Article  Google Scholar 

  38. Monson RK, Holland EA (2001) Biospheric trace gas fluxes and their control over tropospheric chemistry. Annu Rev Ecol Syst 32:547–576. https://doi.org/10.1146/annurev.ecolsys.32.081501.114136

    Article  Google Scholar 

  39. Morrison EC, Drewer J, Heal MR (2016) A comparison of isoprene and monoterpene emission rates from the perennial bioenergy crops short-rotation coppice willow and Miscanthus and the annual arable crops wheat and oilseed rape GCB. Bioenergy 8:211–225. https://doi.org/10.1111/gcbb.12257

    CAS  Article  Google Scholar 

  40. Penuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891. https://doi.org/10.1111/pce.12340

    CAS  Article  Google Scholar 

  41. Purser G, Drewer J, Heal MR, Sircus RAS, Dunn LK, Morison JIL (2020a) Isoprene and monoterpene emissions from alder, aspen and spruce short rotation forest plantations in the UK. Biogeosci Discuss 2020:1–52. https://doi.org/10.5194/bg-2020-437

    Article  Google Scholar 

  42. Purser G, Heal MR, White S, Morison JIL, Drewer J (2020b) Differences in isoprene and monoterpene emissions from cold-tolerant eucalypt species grown in the UK. Atmos Pollut Res 11:2011–2021. https://doi.org/10.1016/j.apr.2020.07.022

    CAS  Article  Google Scholar 

  43. Ramirez KS, Lauber CL, Fierer N (2010) Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochemistry 99:97–107. https://doi.org/10.1007/s10533-009-9393-x

    CAS  Article  Google Scholar 

  44. Riutta T et al (2018) Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests. Glob Chang Biol 24:2913–2928. https://doi.org/10.1111/gcb.14068

    Article  Google Scholar 

  45. RSPO RSPO (2013) Oil palm and land use change in Indonesia. Malaysia and Papua New Guinea, Indonesia

  46. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. https://doi.org/10.1039/b507392h

    CAS  Article  Google Scholar 

  47. Šimpraga M et al (2019) Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. Eur J For Res 138:763–787. https://doi.org/10.1007/s10342-019-01213-2

    CAS  Article  Google Scholar 

  48. Tang J, Schurgers G, Rinnan R (2019) Process understanding of soil BVOC fluxes in natural ecosystems: a review. Rev Geophys 57:966–986. https://doi.org/10.1029/2018rg000634

    Article  Google Scholar 

  49. Wilcove DS, Giam X, Edwards DP, Fisher B, Koh LP (2013) Navjot's nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol Evol 28:531–540. https://doi.org/10.1016/j.tree.2013.04.005

    Article  Google Scholar 

  50. Wilkinson MJ et al (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J 47:960–968. https://doi.org/10.1111/j.1365-313X.2006.02847.x

    CAS  Article  Google Scholar 

  51. Yáñez-Serrano AM et al (2018) Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO). Atmos Chem Phys 18:3403–3418. https://doi.org/10.5194/acp-18-3403-2018

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project LOMBOK (‘Land-use Options for Maintaining BiOdiversity and eKosystem functions’) was funded by the Natural Environment Research Council (NERC) Human Modified Tropical Forest (HMTF) research programme (NE/K016091/1). Special thanks to the LOMBOK research assistants at SAFE for their invaluable help with the field sampling. Thanks also to Dr Sue Owen for advice on soil VOC measurements and Dr Brian Davison for lending equipment.

Funding

This project was funded as LOMBOK (Land-use Options for Maintaining BiOdiversity and eKosystem functions) by the Natural Environment Research Council (NERC) Human Modified Tropical Forest (HMTF) research programme (NE/K016091/1).

Author information

Affiliations

Authors

Contributions

Julia Drewer and Ute Skiba designed the study. Melissa Leduning carried out sample collection with supervision from Julia Drewer, Ute Skiba and Justin Sentian. Julia Drewer, Melissa Leduning, Gemma Purser and James Cash performed analyses with Gemma Purser also advising on data analysis and interpretation. Julia Drewer wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Julia Drewer.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drewer, J., Leduning, M.M., Purser, G. et al. Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-13052-z

Download citation

Keywords

  • Volatile organic compounds (VOCs)
  • Land-use
  • Mineral soil
  • α-pinene
  • β-pinene
  • d-limonene
  • Leaf litter