Enhanced solar-driven photocatalytic performance of a ternary composite of SnO2 quantum dots//AgVO3 nanoribbons//g-C3N4 nanosheets (0D/1D/2D) structures for hydrogen production and dye degradation

Abstract

Herein, we report the synthesis of between SnO2 QDs /AgVO3 nanoribbons/g-C3N4 nanosheets of ternary photocatalytic systems for the production of H2 through light irradiation. The SnO2/AgVO3/g-C3N4 photocatalyst was successfully produced by using the hydrothermal process. The structural characterizations of the samples revealed the successful formation of ternary heterostructures where SnO2, AgVO3 and g-C3N4 (quantum dots/nanoribbons/nanosheets) 0D/1D/2D structures make a good interface with each other. The fabricated heterostructures of AgVO3/g-C3N4 and SnO2/AgVO3/g-C3N4 photocatalytic structures performed enriched photocatalytic performance for H2 production over that of the pristine g-C3N4, AgVO3 and SnO2 photocatalysts. The AgVO3/g-C3N4 and SnO2 /AgVO3/g-C3N4 of photocatalysts were found to produce H2 of around 17,000 μmol g-1 and 77,000 μmol g-1, respectively, which is much 4.5 times greater than that of AgVO3/g-C3N4 photocatalyst. Moreover, the photodegradation behaviours of prepared catalysts were studied with the dye (rhodamine B, RhB) under light irradiation. The ternary composite SnO2/AgVO3/g-C3N4 performed photodegradation of RhB in 50 min. The higher photocatalytic activity for the ternary photocatalysts is predominantly due to the effective charge separation at the perfect interface formation amid SnO2 and AgVO3/g-C3N4.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The data that support the findings of this study are available from the corresponding author (Koduru Mallikarjuna) upon reasonable request.

References

  1. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science (80- ) 293:269–271. https://doi.org/10.1126/science.1061051

  2. Babu B, Neelakanta Reddy I, Yoo K, Kim D, Shim J (2018) Bandgap tuning and XPS study of SnO2 quantum dots. Mat. Lett 221:211–215. https://doi.org/10.1016/j.matlet.2018.03.107

    CAS  Article  Google Scholar 

  3. Cao S, Wang H, Li H, Chen J, Zang Z (2020) Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J 394:124903. https://doi.org/10.1016/j.cej.2020.124903

    CAS  Article  Google Scholar 

  4. El-Shabasy R, Yosri N, El-Seedi H et al (2019) A green synthetic approach using chili plant supported Ag/Ag2O@P25 heterostructure with enhanced photocatalytic properties under solar irradiation. Optik (Stuttg) 192:162943. https://doi.org/10.1016/j.ijleo.2019.162943

    CAS  Article  Google Scholar 

  5. EL-Sheshtawy HS, El-Hosainy HM, Shoueir KR, et al (2019) Facile immobilization of Ag nanoparticles on g-C3N4 /V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants. Appl Surf Sci 467–468:268–276. https://doi.org/10.1016/j.apsusc.2018.10.109

  6. Finegold L, Cude JL (1972) Biological sciences: one and two-dimensional structure of alpha-helix and beta-sheet forms of poly(L-Alanine) shown by specific heat measurements at low temperatures (1.5-20 K). Nature 238:38–40. https://doi.org/10.1038/238038a0

    CAS  Article  Google Scholar 

  7. Gao L, Li Z, Liu J (2017) Facile synthesis of Ag3VO4/β-AgVO3 nanowires with efficient visible-light photocatalytic activity. RSC Adv 7:27515–27521. https://doi.org/10.1039/c7ra03955g

    CAS  Article  Google Scholar 

  8. Hu X, Wang H, Wang M, Zang Z (2020) Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol Energy 206:816–825. https://doi.org/10.1016/j.solener.2020.06.057

    CAS  Article  Google Scholar 

  9. Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116:14120–14136. https://doi.org/10.1021/acs.chemrev.6b00398

    CAS  Article  Google Scholar 

  10. Jin Z, Zhang L (2020) Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution. J. Mat. Sci. Tech. 49:144–156. https://doi.org/10.1016/j.jmst.2020.02.025

    Article  Google Scholar 

  11. Joseph S, Abraham S, Priyanka RN, Abraham T, Suresh A, Mathew B (2019) In situ S-doped ultrathin gC3N4 nanosheets coupled with mixed-dimensional (3D/1D) nanostructures of silver vanadates for enhanced photocatalytic degradation of organic pollutants. New J Chem 43:10618–10630. https://doi.org/10.1039/c9nj01353a

    CAS  Article  Google Scholar 

  12. Ju P, Fan H, Zhang B, Shang K, Liu T, Ai S, Zhang D (2013) Enhanced photocatalytic activity of B-AgVO3 nanowires loaded with ag nanoparticles under visible light irradiation. Separation and Purification Technology 109:107–110. https://doi.org/10.1016/j.seppur.2013.01.057

    CAS  Article  Google Scholar 

  13. Karimi F, Rajabi HR, Kavoshi L (2019) Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: study of capping agent effect on photocatalytic activity. Ultrason Sonochem 57:139–146. https://doi.org/10.1016/j.ultsonch.2019.05.019

    CAS  Article  Google Scholar 

  14. Karimi H, Rajabi HR, Kavoshi L (2020) Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots. J Photochem Photobiol A Chem 397:112534. https://doi.org/10.1016/j.jphotochem.2020.112534

    CAS  Article  Google Scholar 

  15. Kong X, Guo Z, Zeng C, Huang J, Cao L, Li L, Yin L, Wen P, Feng Q, Xu Z (2015) Soft chemical in situ synthesis, formation mechanism and electrochemical performances of 1D bead-like AgVO3 nanoarchitectures. J Mater Chem A 3:18127–18135. https://doi.org/10.1039/c5ta05110j

    CAS  Article  Google Scholar 

  16. Lin X, Xu D, Jiang S, Xie F, Song M, Zhai H, Zhao L, Che G, Chang L (2017) Graphitic carbon nitride nanocrystals decorated AgVO3 nanowires with enhanced visible-light photocatalytic activity. Catal Commun 89:96–99. https://doi.org/10.1016/j.catcom.2016.10.021

    CAS  Article  Google Scholar 

  17. Lin D, Gao M, You L, Li Y, Li Z, Guo L, Li T, Liu M (2020) Fabrication of novel Ag/AgVO3/WO3 homojunction/heterojunction nanomaterials with highly enhanced photocatalytic activity-Investigation on type Ӏ plus Z-scheme mechanism. J Alloys. Comp. 846:156274. https://doi.org/10.1016/j.jallcom.2020.156274

    CAS  Article  Google Scholar 

  18. Liu J, Xue W, Jin G, Zhai Z, Lv J, Hong W, Chen Y (2019) Preparation of tin oxide quantum dots in aqueous solution and applications in semiconductor gas sensors. Nanomaterials 9:2–11. https://doi.org/10.3390/nano9020240

    CAS  Article  Google Scholar 

  19. Ma Q, Hu X, Liu N, Sharma A, Zhang C, Kawazoe N, Chen G, Yang Y (2020) Polyethylene glycol (PEG)-modified Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst film with enhanced efficiency and stability under solar light. J. Colloid Interface Sci. 569:101–113. https://doi.org/10.1016/j.jcis.2020.02.064

    CAS  Article  Google Scholar 

  20. Patnaik S, Martha S, Parida KM (2016) An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv 6:46929–46951. https://doi.org/10.1039/c5ra26702a

    CAS  Article  Google Scholar 

  21. Phu ND, Hoang LH, Van Hai P et al (2020) Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification. J. Alloys Compd. 824:153914. https://doi.org/10.1016/j.jallcom.2020.153914

    CAS  Article  Google Scholar 

  22. Qin H, Li W, Xia Y, He T (2011) Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Appl Mater Interfaces 3:3152–3156. https://doi.org/10.1021/am200655h

    CAS  Article  Google Scholar 

  23. Rajabi HR, Shahrezaei F, Farsi M (2016) Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J Mater Sci Mater Electron 27:9297–9305. https://doi.org/10.1007/s10854-016-4969-4

    CAS  Article  Google Scholar 

  24. Roushani M, Mavaei M, Daneshfar A, Rajabi HR (2017) Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process. J Mater Sci Mater Electron 28:5135–5143. https://doi.org/10.1007/s10854-016-6169-7

    CAS  Article  Google Scholar 

  25. Rueda-Marquez JJ, Levchuk I, Fernández Ibañez P, Sillanpää M (2020) A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 258:120694. https://doi.org/10.1016/j.jclepro.2020.120694

    CAS  Article  Google Scholar 

  26. Shi H, Zhang C, Zhou C (2015) g-C3N4 hybridized with AgVO3 nanowires: preparation and its enhanced visible-light-induced photocatalytic activity. RSC Adv 5:50146–50154. https://doi.org/10.1039/c5ra08367b

    CAS  Article  Google Scholar 

  27. Sivakumar V, Suresh R, Giribabu K, Narayanan V (2015) AgVO3 nanorods: synthesis, characterization and visible light photocatalytic activity. Solid State Sci 39:34–39. https://doi.org/10.1016/j.solidstatesciences.2014.10.016

    CAS  Article  Google Scholar 

  28. Sivula K, Van De Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1. https://doi.org/10.1038/natrevmats.2015.10

  29. Wang J, Lu C, Liu X, Wang Y, Zhu Z, Meng D (2017) Synthesis of tin oxide (SnO & SnO2) micro/nanostructures with novel distribution characteristic and superior photocatalytic performance. Mater Des 115:103–111. https://doi.org/10.1016/j.matdes.2016.11.043

    CAS  Article  Google Scholar 

  30. Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z (2020) NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Sol RRL 4:1–8. https://doi.org/10.1002/solr.201900363

    CAS  Article  Google Scholar 

  31. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80. https://doi.org/10.1038/nmat2317

    CAS  Article  Google Scholar 

  32. Wang X, Ren P (2018) Flower-like SnO2/g-C3N4 heterojunctions: the face-to-face contact interface and improved photocatalytic properties. Adv Powder Technol 29:1153–1157. https://doi.org/10.1016/j.apt.2018.02.006

    CAS  Article  Google Scholar 

  33. Xu C, Ravi Anusuyadevi P, Aymonier C, Luque R, Marre S (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48:3868–3902. https://doi.org/10.1039/c9cs00102f

    CAS  Article  Google Scholar 

  34. Xu J, Hu C, Xi Y, Wan B, Zhang C, Zhang Y (2012) Synthesis and visible light photocatalytic activity of β-AgVO 3 nanowires. Solid State Sci 14:535–539. https://doi.org/10.1016/j.solidstatesciences.2012.01.013

    CAS  Article  Google Scholar 

  35. Yu X, Gao L, Huang J, et a (2018) Construction of hybrid Ag2CO3/AgVO3 nanowires with enhanced visible light photocatalytic activity. Mat. Res. Bull. 101:246–252. https://doi.org/10.1016/j.materresbull.2018.01.023.

  36. Zada A, Khan M, Qureshi MN, Liu SY, Wang R (2020) Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing g-C3N4 With SnO2. Front Chem 7:1–8. https://doi.org/10.3389/fchem.2019.00941

    CAS  Article  Google Scholar 

  37. Zhang K, Ma M, Li P, Wang DH, Park JH (2016) Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv Energy Mater 6:1–16. https://doi.org/10.1002/aenm.201600602

    CAS  Article  Google Scholar 

  38. Zhang S, Li J, Wang X, Huang Y, Zeng M, Xu J (2015) Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. J Mater Chem A 3:10119–10126. https://doi.org/10.1039/c5ta00635j

    CAS  Article  Google Scholar 

  39. Zhanh S, Li J, Wang X et al (2015) Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. J. Mater. Chem. A 3:10119–10126. https://doi.org/10.1039/c5ta00635j

    Article  Google Scholar 

  40. Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chemie - Int Ed 54:12868–12884. https://doi.org/10.1002/anie.201501788

    CAS  Article  Google Scholar 

  41. Zhou T, Xu Y, Xu H, Wang H, da Z, Huang S, Ji H, Li H (2014) In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/g-C3N4 and its activity. Cera. Inter. 40:9293–9301. https://doi.org/10.1016/j.ceramint.2014.01.152

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The King Saud University authors extend their gratitude to their appreciation for the Deanship of Scientific Research at King Saud University for funding this work through research (Group No. RG-1441-539).

Funding

This work is supported by the Deanship of Scientific Research programs of King Saud University.

Author information

Affiliations

Authors

Contributions

Koyyada Ganesh: Data curation, Methodology, Investigation. Nadavala Siva Kumar: Fund acquisition, Writing and Investigation. Ebrahim H. Al-Ghurabi: Formal analysis. Mohammad Asif: Writing and Editing. Koduru Mallikarjuna: Formal analysis, Supervision, Writing, Reviewing and Editing.

Corresponding author

Correspondence to Koduru Mallikarjuna.

Ethics declarations

Ethics approval

Ethical approval is not required for our research investigation, there are no human and animal subjects.

Consent to participate and publication

Ensure that all authors mentioned in the manuscript have agreed for authorship read and approved the manuscript, and given the consent for submission and subsequent publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ricardo Torres-Palma

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koyyada, G., Siva Kumar, N., Al-Ghurabi, E.H. et al. Enhanced solar-driven photocatalytic performance of a ternary composite of SnO2 quantum dots//AgVO3 nanoribbons//g-C3N4 nanosheets (0D/1D/2D) structures for hydrogen production and dye degradation. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12962-2

Download citation

Keywords

  • SnO2 QDs/AgVO3 nanoribbons/g-C3N4 nanosheets
  • Ternary composite
  • H2 production
  • Dye degradation
  • Photocatalysis
  • Dimension effect