The effect of magnetic field on the performance improvement of a conventional solar still: a numerical study

Abstract

Due to growing demand for potable water, the improvement of fresh water production systems such as conventional solar stills is a crucial issue. Conventional solar stills are one of the simplest methods of the production of fresh water from saline water; however, they are fairly low-performance devices. Since oxygen is a paramagnetic gas, the humid airflow in a conventional solar still can be controlled by an externally imposed magnetic field. Therefore, this paper presents the effect of magnetic field on the performance improvement of a conventional solar still as a novel technique. The governing equations of the problem are discretized by the finite volume method. The impacts of the applied magnetic field arising from a multilayer solenoid on the streamlines patterns, temperature and mass fraction contours, the production rate of water (\( \dot{\mathrm{m}} \)), and the average heat transfer rate (Nu) are presented at five specified times (cases). The influences of important factors such as intensity (0≤NI≤100000) and location of the magnetic field (Xc=0.15, 0.49, and 0.83) on the heat and mass transfer rates are explored. It is found that the production rate of water and heat transfer rate are increasing functions of magnetic field intensity. For the applied magnetic field with NI = 105and Xc = 0.83 m, water productivity and convective heat transfer rate can be increased by about 43%, 38%, 41%, 40%, and 48% for cases 1, 2, 3, 4, and 5, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

C p :

Specific heat at constant pressure, (J/(kg. K)

C v :

Vapor mass fraction, (-)

D AB :

Mass diffusivity of vapor, ( m2/s)

g L :

Lande’s g-factor

H l :

Left side height of solar still, (m)

H r :

Right side height of solar still, (m)

H :

Intensity of magnetic field, (A/m)

I:

Electric current, (A)

L:

Length of solar still, (m)

\( \dot{m} \) :

Productivity, \( \left(\frac{\mathrm{kg}}{\ {m}^2.\mathrm{hr}}\right) \)

M:

Magnetization, (A/m)

N A :

Avogadro number,\( \left(\frac{1}{\mathrm{mol}}\right) \)

Nu:

Nusselt number, (-)

u:

Velocity component in the x-direction, \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

v:

Velocity component in the y-direction, \( \left(\frac{\mathrm{m}}{\mathrm{s}}\right) \)

T i :

Mean operating temperature, (°C)

α :

Thermal diffusivity of air, (m2/s)

β :

Volumetric expansion coefficient, \( \left(\frac{1}{\mathrm{K}}\right) \)

ρ :

Density, (kg/m3)

υ :

Kinematic viscosity of air, (m2/s)

χ :

Magnetic susceptibility, (-)

μ 0 :

Vacuum permeability, (T.m/A)

μ B :

Bohr magneton, (A. m2)

μ :

Viscosity, (Pa.s)

w:

Water

g:

Glass

s:

Still

References

  1. Abd Elbar AR, Hassan H (2020) An experimental work on the performance of new integration of photovoltaic panel with solar still in semi-arid climate conditions. Renew Energy 146:1429–1443. https://doi.org/10.1016/j.renene.2019.07.069

    Article  Google Scholar 

  2. Abdullah AS, Essa FA, Omara ZM, Rashid Y, Hadj-Taieb L, Abdelaziz GB, Kabeel AE (2019) Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study. Energy Convers Manag 199:112024. https://doi.org/10.1016/j.enconman.2019.112024

    Article  Google Scholar 

  3. Bagherzadeh SA, Jalali E, Sarafraz MM, Ali Akbari O, Karimipour A, Goodarzi M, Bach QV (2019) Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Methods Heat Fluid Flow 30(5):2683–2704. https://doi.org/10.1108/HFF-02-2019-0150

    Article  Google Scholar 

  4. Bednarz T, Tagawa T, Kaneda M, Ozoe H, Szmyd JS (2004) Magnetic and gravitational convection of air with a coil inclined around the x axis. Numer Heat Transfer; Part A: Applications 46(1):99–113. https://doi.org/10.1080/10407780490457464

    CAS  Article  Google Scholar 

  5. Bednarz T, Tagawa T, Kaneda M, Ozoe H, Szmyd JS (2005) Convection of air in a cubic enclosure with an electric coil inclined in general orientations. Fluid Dyn Res 36(2):91–106. https://doi.org/10.1016/j.fluiddyn.2004.12.002

    Article  Google Scholar 

  6. Braithwaite D, Beaugnon E, Tournier R (1991) Magnetically controlled convection in a paramagnetic fluid. Nature 354(6349):134–136. https://doi.org/10.1038/354134a0

    Article  Google Scholar 

  7. Carruthers JR, Wolfe R (1968) Magnetothermal convection in insulating paramagnetic fluids. J Appl Phys 39(12):5718–5722. https://doi.org/10.1063/1.1656038

    CAS  Article  Google Scholar 

  8. Clark JA (1990) The steady-state performance of a solar still. Sol Energy 44(1):43–49. https://doi.org/10.1016/0038-092X(90)90025-8

    Article  Google Scholar 

  9. Dunkle R. (1961). Solar water distillation: the roof type still and double-effect diffusion still,. 5th International Conference of Development in Heat Transfer, 5, 895.

  10. Edalatpour M, Kianifar A, Ghiami S (2015) Effect of blade installation on heat transfer and fluid flow within a single slope solar still. Int Commun Heat Mass Transfer 66:63–70. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.015

    Article  Google Scholar 

  11. Elbar ARA, Yousef MS, Hassan H (2019) Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. J Clean Prod 233:665–680. https://doi.org/10.1016/j.jclepro.2019.06.111

    Article  Google Scholar 

  12. Gehrke T (2013) Design of permanent magnetic solenoids for REGAE. https://bib-pubdb1.desy.de/record/154592

  13. Goshayeshi HR, Goodarzi M, Dahari M (2015) Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Thermal Fluid Sci 68:663–668. https://doi.org/10.1016/j.expthermflusci.2015.07.014

    CAS  Article  Google Scholar 

  14. Goshayeshi, Reza H, Safaei MR (2019) Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still. Int J Numer Methods Heat Fluid Flow 30(6):3183–3198. https://doi.org/10.1108/HFF-01-2019-0018

    Article  Google Scholar 

  15. Hajatzadeh Pordanjani A, Aghakhani S, Karimipour A, Afrand M, Goodarzi M (2019) Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim 137(3):997–1019. https://doi.org/10.1007/s10973-018-7982-4

    CAS  Article  Google Scholar 

  16. Hassan H, Yousef MS, Ahmed MS, Fathy M (2020) Energy, exergy, environmental, and economic analysis of natural and forced cooling of solar still with porous media. Environ Sci Pollut Res 27(30):38221–38240. https://doi.org/10.1007/s11356-020-09995-4

    CAS  Article  Google Scholar 

  17. Hedayati-Mehdiabadi E, Sarhaddi F, Sobhnamayan F (2020) Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector. Renew Energy 145:2409–2425. https://doi.org/10.1016/j.renene.2019.07.160

    Article  Google Scholar 

  18. Jocher A, Pitsch H, Gomez T, Bonnety J, Legros G (2017) Combustion instability mitigation by magnetic fields. Phys Rev E 95(6):063113. https://doi.org/10.1103/PhysRevE.95.063113

    Article  Google Scholar 

  19. Kabeel AE, Abdelgaied M (2020) Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover. Renew Energy 146:769–775. https://doi.org/10.1016/j.renene.2019.07.020

    CAS  Article  Google Scholar 

  20. Kabeel AE, Khairat Dawood MM, Ramzy K, Nabil T, Elnaghi B, Elkassar A (2019) Enhancement of single solar still integrated with solar dishes: an experimental approach. Energy Convers Manag 196:165–174. https://doi.org/10.1016/j.enconman.2019.05.112

    Article  Google Scholar 

  21. Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AAAA (2018) Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy 122:1–16. https://doi.org/10.1016/j.renene.2018.01.023

    CAS  Article  Google Scholar 

  22. Kumar Singh A, Samsher (2020) Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Mater Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.05.117

  23. Maithani R, Kumar A, Gholamali Zadeh P, Safaei MR, Gholamalizadeh E (2020) Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters. J Therm Anal Calorim 139(2):1195–1212. https://doi.org/10.1007/s10973-019-08551-8

    CAS  Article  Google Scholar 

  24. Malik MZ, Musharavati F, Khanmohammadi S, Khanmohammadi S, Nguyen DD (2021) Solar still desalination system equipped with paraffin as phase change material: exergoeconomic analysis and multi-objective optimization. Environ Sci Pollut Res 28(1):220–234. https://doi.org/10.1007/s11356-020-10335-9

    CAS  Article  Google Scholar 

  25. Moumouh J, Tahiri M, Salouhi M, Balli L (2016) Theoretical and experimental study of a solar desalination unit based on humidification–dehumidification of air. Int J Hydrog Energy 41(45):20818–20822. https://doi.org/10.1016/j.ijhydene.2016.05.207

    CAS  Article  Google Scholar 

  26. Nakagawa J, Hirota N, Kitazawa K, Shoda M (1999) Magnetic field enhancement of water vaporization. J Appl Phys 86(5):2923–2925. https://doi.org/10.1063/1.371144

    CAS  Article  Google Scholar 

  27. Naroei M, Sarhaddi F, Sobhnamayan F (2018) Efficiency of a photovoltaic thermal stepped solar still: experimental and numerical analysis. Desalination 441:87–95. https://doi.org/10.1016/j.desal.2018.04.014

    CAS  Article  Google Scholar 

  28. Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR (2019) Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci (Switzerland) 9(3):463. https://doi.org/10.3390/app9030463

    CAS  Article  Google Scholar 

  29. Panchal H, Sadasivuni KK, Israr M, Thakar N (2019) Various techniques to enhance distillate output of tubular solar still: a review. Groundwater Sustain Dev 9:100268. https://doi.org/10.1016/j.gsd.2019.100268

    Article  Google Scholar 

  30. Patankar, S. V. (1980). Numerical heat transfer and fluid flow.

    Google Scholar 

  31. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, Goodarzi M (2020) Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim 139(4):2623–2631. https://doi.org/10.1007/s10973-019-08684-w

    CAS  Article  Google Scholar 

  32. Rahbar N, Esfahani JA (2013) Productivity estimation of a single-slope solar still: theoretical and numerical analysis. Energy. 49:289–297. https://doi.org/10.1016/j.energy.2012.10.023

    Article  Google Scholar 

  33. Rahbar N, Asadi A, Fotouhi-Bafghi E (2018) Performance evaluation of two solar stills of different geometries: tubular versus triangular: experimental study, numerical simulation, and second law analysis. Desalination 443:44–55. https://doi.org/10.1016/j.desal.2018.05.015

    CAS  Article  Google Scholar 

  34. Rahmani A, Boutriaa A (2017) Numerical and experimental study of a passive solar still integrated with an external condenser. Int J Hydrog Energy 42(48):29047–29055. https://doi.org/10.1016/j.ijhydene.2017.07.242

    CAS  Article  Google Scholar 

  35. Rashidi S, Abolfazli Esfahani J, Rahbar N (2017) Partitioning of solar still for performance recovery: experimental and numerical investigations with cost analysis. Sol Energy 153:41–50. https://doi.org/10.1016/j.solener.2017.05.041

    Article  Google Scholar 

  36. Safaei MR, Goshayeshi HR, Chaer I (2019) Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies 12(10):2002. https://doi.org/10.3390/en12102002

    CAS  Article  Google Scholar 

  37. Sarafraz MM, Safaei MR (2019) Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy 142:364–372. https://doi.org/10.1016/j.renene.2019.04.091

    CAS  Article  Google Scholar 

  38. Sarafraz MM, Tlili I, Baseer MA, Safaei MR (2019a) Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: experimental assessment and efficiency improvement. Appl Sci (Switzerland) 9(9):1877. https://doi.org/10.3390/app9091877

    CAS  Article  Google Scholar 

  39. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR (2019b) Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM). Physica A: Statistical Mechanics and Its Applications 534:122146. https://doi.org/10.1016/j.physa.2019.122146

    Article  Google Scholar 

  40. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR, Goodarzi M (2019c) Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities. Appl Sci (Switzerland) 9(10):2101. https://doi.org/10.3390/app9102101

    CAS  Article  Google Scholar 

  41. Sharon H, Reddy KS (2015) A review of solar energy driven desalination technologies. Renew Sustain Energy Rev 41:1080–1118. https://doi.org/10.1016/j.rser.2014.09.002

    CAS  Article  Google Scholar 

  42. Sharshir SW, Elsheikh AH, Ellakany YM, Kandeal AW, Edreis EMA, Sathyamurthy R, Thakur AK, Eltawil MA, Hamed MH, Kabeel AE (2020) Improving the performance of solar still using different heat localization materials. Environ Sci Pollut Res 27(11):12332–12344. https://doi.org/10.1007/s11356-020-07800-w

    CAS  Article  Google Scholar 

  43. Shawaqfeh AT, Farid MM (1995) New development in the theory of heat and mass transfer in solar stills. Sol Energy 55(6):527–535. https://doi.org/10.1016/0038-092X(95)00069-4

    CAS  Article  Google Scholar 

  44. Singh AK, Samsher (2021) A review study of solar desalting units with evacuated tube collectors. J Clean Prod 279:123542. https://doi.org/10.1016/j.jclepro.2020.123542

    Article  Google Scholar 

  45. Singh AK, Singh DB, Mallick A, Harender, Sharma SK, Kumar N, Dwivedi VK (2019) Performance analysis of specially designed single basin passive solar distillers incorporated with novel solar desalting stills: a review. Sol Energy 185:146–164. https://doi.org/10.1016/j.solener.2019.04.040

    Article  Google Scholar 

  46. Singh AK, Singh DB, Dwivedi VK, Tiwari GN, Gupta A (2020a) Water purification using solar still with/without nano-fluid: a review. Mater Today: Proceedings 21:1700–1706. https://doi.org/10.1016/j.matpr.2019.12.025

    CAS  Article  Google Scholar 

  47. Singh AK, Yadav RK, Mishra D, Prasad R, Gupta LK, Kumar P (2020b) Active solar distillation technology: a wide overview. Desalination 493:114652. https://doi.org/10.1016/j.desal.2020.114652

    CAS  Article  Google Scholar 

  48. Soltanipour H, Gharegöz A, Oskooee MB (2020) Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe. J Braz Soc Mech Sci Eng 42(3):135. https://doi.org/10.1007/s40430-020-2218-5

    CAS  Article  Google Scholar 

  49. Song KW, Tagawa T (2018) Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int J Therm Sci 125:52–65. https://doi.org/10.1016/j.ijthermalsci.2017.11.012

    CAS  Article  Google Scholar 

  50. Wu WF, Qu J, Zhang K, Chen WP, Li BW (2016) Experimental studies of magnetic effect on methane laminar combustion characteristics. Combust Sci Technol 188(3):472–480. https://doi.org/10.1080/00102202.2015.1119825

    CAS  Article  Google Scholar 

  51. Yamada E, Shinoda M, Yamashita H, Kitagawa K (2003) Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame. Combust Flame 135(4):365–379. https://doi.org/10.1016/j.combustflame.2003.08.005

    CAS  Article  Google Scholar 

  52. Yekani Motlagh S, Mehdizadeh Youshanloei M, Safabakhsh T (2019) Numerical investigation of FHD pump for pumping the magnetic nanofluid inside the microchannel with hydrophobic walls. J Braz Soc Mech Sci Eng 41(5):237. https://doi.org/10.1007/s40430-019-1734-7

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Mohammad Mehdizadeh Youshanlouei: software, validation, formal analysis, investigation, data curation, and writing original draft. Saber Yekani Motlagh: supervision, conceptualization, methodology, and writing—review and editing. Hossein Soltanipour: supervision, conceptualization, methodology, and writing—review and editing.

Corresponding author

Correspondence to Hossein Soltanipour.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehdizadeh Youshanlouei, M., Yekani Motlagh, S. & Soltanipour, H. The effect of magnetic field on the performance improvement of a conventional solar still: a numerical study. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12947-1

Download citation

Keywords

  • Desalination
  • Humid air
  • Magnetic field
  • Numerical study
  • Production rate
  • Solar still