Increased susceptibility to temperature variation for non-accidental emergency ambulance dispatches in Shenzhen, China

Abstract

Most studies focused on the temporal trend of mortality risk associated with temperature exposure. The relative role of heat, cold, and temperature variation (TV) on morbidity and its temporal trends are explored insufficiently. This study aims to investigate the temporal trends of emergency ambulance dispatch (EAD) risk and the attributable burden of heat, cold, and hourly temperature variation (HTV). We collected time-series data of daily EAD and ambient temperature in Shenzhen from 2010 to 2017. HTV was calculated as the standard deviation of the hourly temperatures between 2 consecutive days. Quasi-Poisson generalized additive models (GAM) with a time-varying distributed lag nonlinear model (DLNM) were applied to examine temporal trends of the HTV-, heat-, and cold-EAD association. The temporal variation of the attributable fraction (AF%) and attributable number (AN) for different temperature exposures was also calculated. The largest RR was observed in extreme cold [1.30 (95% CI: 1.18, 1.43)] and moderate cold [1.25 (95% CI: 1.17, 1.34)]. Significant increasing trends in HTV-related effects and burden were observed, especially for the extreme HTV effects (P for interaction < 0.05). Decreasing trends were observed in the heat-related effect and burden, though it showed no significance (P for interaction = 0.46). There was no clear change pattern of cold-related effects and burdens. Overall, the three temperature exposure caused 13.7% of EAD, of which 4.1%, 4.3%, and 5.3% were attributed to HTV, heat, and cold, respectively. All the temperature indexes in this study, especially the cold effect, are responsible for the increased risk of EAD. People have become more susceptible to HTV over the recent decade. However, there is no clear evidence to support the temporal change of the population’s susceptibility to heat and cold. Thus, in addition to heat and cold, the emergency ambulance service department should pay more attention to HTV under climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data that support the findings of this study are available from Shenzhen Emergency Medical Center but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Shenzhen Emergency Medical Center.

References

  1. Achebak H, Devolder D, Ballester J (2019) Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain : a national time-series analysis. Lancet Planet Heal 3:e297–e306. https://doi.org/10.1016/S2542-5196(19)30090-7

    Article  Google Scholar 

  2. Arbuthnott K, Hajat S, Heaviside C, Vardoulakis S (2016) Changes in population susceptibility to heat and cold over time : assessing adaptation to climate change. Environ Health 15:74–93. https://doi.org/10.1186/s12940-016-0102-7

    Article  Google Scholar 

  3. Barreca A, Clay K, Deschenes O, Greenstone M, Shapiro JS (2016) Adapting to climate change: the remarkable decline in the US temperature-mortality relationship over the twentieth century. J Polit Econ 124:105–159. https://doi.org/10.1086/684582

  4. Cheng J, Bambrick H, Tong S, Su H, Xu Z, Hu W (2020) Winter temperature and myocardial infarction in Brisbane , Australia : spatial and temporal analyses. Sci Total Environ 715:136860. https://doi.org/10.1016/j.scitotenv.2020.136860

    CAS  Article  Google Scholar 

  5. Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W (2019a) Impacts of exposure to ambient temperature on burden of disease : a systematic review of epidemiological evidence. Int J Biometeorol 63:1099–1115. https://doi.org/10.1007/s00484-019-01716-y

    Article  Google Scholar 

  6. Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W (2019b) Impacts of heat, cold, and temperature variability on mortality in Australia, 2000–2009. Sci Total Environ 651:2558–2565. https://doi.org/10.1016/j.scitotenv.2018.10.186

    CAS  Article  Google Scholar 

  7. Christidis N, Donaldson GC, Stott PA (2010) Causes for the recent changes in cold- and heat-related mortality in England and Wales. Clim Chang 102:539–553. https://doi.org/10.1007/s10584-009-9774-0

    Article  Google Scholar 

  8. Chung Y, Noh H, Honda Y, Hashizume M, Bell ML, Guo YLL, Kim H (2017) Temporal changes in mortality related to extreme temperatures for 15 cities in Northeast Asia : adaptation to heat and maladaptation to cold. Am J Epidemiol 185:907–913. https://doi.org/10.1093/aje/kww199

    Article  Google Scholar 

  9. Cui Y, Ai S, Liu Y, Qian Z(M), Wang C, Sun J, Sun X, Zhang S, Syberg KM, Howard S, Qin L, Lin H (2019) Hourly Associations between ambient temperature and emergency ambulance calls in one central Chinese city: call for an immediate emergency plan. Sci Total Environ 1:711–135046. https://doi.org/10.1016/j.scitotenv.2019.135046

    CAS  Article  Google Scholar 

  10. Ding Z, Guo P, Xie F, Chu H, Li K, Pu J, Pang S, Dong H, Liu Y, Pi F, Zhang Q (2015) Impact of diurnal temperature range on mortality in a high plateau area in southwest China : a time series analysis. Sci Total Environ 526:358–365. https://doi.org/10.1016/j.scitotenv.2015.05.012

    CAS  Article  Google Scholar 

  11. Gasparrini A, Armstrong B, Kenward MG (2010) Distributed lag non-linear models. Stat Med 29:2224–2234. https://doi.org/10.1002/sim.3940

    CAS  Article  Google Scholar 

  12. Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, Zanobetti A, Schwartz JD, Tobias A, Leone M, Tong S, Honda Y, Kim H, Armstrong BG (2015) Temporal variation in heat–mortality associations : a multicountry study. Environ Health Perspect 1200:1200–1207. https://doi.org/10.1289/ehp.1409070

    Article  Google Scholar 

  13. Gasparrini A, Leone M (2014) Attributable risk from distributed lag models. BMC Med Res Methodol 14:1–8 http://www.biomedcentral.com/1471-2288/14/55

    Article  Google Scholar 

  14. Gerard A (2015) Temperature and cardiovascular us elderly changes over time. Epidemiology 18:369–372. https://doi.org/10.1097/01.ede.0000257515.34445.aO

    Article  Google Scholar 

  15. Green H, Bailey J, Schwarz L, Vanos J, Ebi K, Benmarhnia T (2019) Impact of heat on mortality and morbidity in low and middle income countries : A review of the epidemiological evidence and considerations for future research. Environ Res 171:80–91. https://doi.org/10.1016/j.envres.2019.01.010

    CAS  Article  Google Scholar 

  16. Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, Coelho MSZS, Pan X, Kim H, Hashizume M, Honda Y, Guo YL, Wu CF, Zanobetti A, Schwartz JD, Bell ML, Overcenco A, Punnasiri K, Li S, Tian L, Saldiva P, Williams G, Tong S (2016) Temperature variability and mortality : a multi-country study. Environ Health Perspect 1554:1554–1559. https://doi.org/10.1289/EHP149

    Article  Google Scholar 

  17. Guo Y, Gasparrini A, Armstrong B et al (2015) Global variation in the effects of ambient temperature on mortality : a systematic evaluation. Eur PMC Funders Gr 25:781–789. https://doi.org/10.1097/EDE.0000000000000165.Global

    Article  Google Scholar 

  18. Hu K, Guo Y, Yang X, Zhong J, Fei F, Chen F, Zhao Q, Zhang Y, Chen G, Chen Q, Ye T, Li S, Qi J (2019) Temperature variability and mortality in rural and urban areas in Zhejiang province, China : an application of a spatiotemporal index. Sci Total Environ 647:1044–1051. https://doi.org/10.1016/j.scitotenv.2018.08.095

    CAS  Article  Google Scholar 

  19. Hu J, Wen Y, Duan Y, Yan S, Liao Y, Pan H, Zhu J, Yin P, Cheng J, Jiang H (2020) The impact of extreme heat and heat waves on emergency ambulance dispatches due to external cause in Shenzhen, China *. Environ Pollut 261:1–7. https://doi.org/10.1016/j.envpol.2020.114156

    CAS  Article  Google Scholar 

  20. Katsouyanni K, Lanki T, Basagaña X et al (2015) Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results from the PHASE Project. Int J Environ Res Public Health 12:15567–15583. https://doi.org/10.3390/ijerph121215006

    CAS  Article  Google Scholar 

  21. Krapivin VF, Varotsos CA, Soldatov VY (2017) The earth ’ s population can reach 14 billion in the 23rd century without significant adverse effects on survivability. Int J Environ Res Public Health 14:1–19. https://doi.org/10.3390/ijerph14080885

    Article  Google Scholar 

  22. Lee W, Bell ML, Gasparrini A, Armstrong BG, Sera F, Hwang S, Lavigne E, Zanobetti A, Coelho MSZS, Saldiva PHN, Osorio S, Tobias A, Zeka A, Goodman PG, Forsberg B, Rocklöv J, Hashizume M, Honda Y, Guo YLL, Seposo X, van Dung D, Dang TN, Tong S, Guo Y, Kim H (2018) Mortality burden of diurnal temperature range and its temporal changes : a multi-country study. Environ Int 110:123–130. https://doi.org/10.1016/j.envint.2017.10.018

    Article  Google Scholar 

  23. Lee W, Michelle H, Young J et al (2018) Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ Int 116:136–146. https://doi.org/10.1016/j.envint.2018.04.017

    Article  Google Scholar 

  24. Lopez AD, Adair T (2019) Original article Is the long-term decline in cardiovascular- disease mortality in high-income countries over ? Evidence from national vital statistics. Int J Epidemiol 48:1–9. https://doi.org/10.1093/ije/dyz143

    Article  Google Scholar 

  25. Lu P, Xia G, Zhao Q, Xu R, Li S, Guo Y (2020) Temporal trends of the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016 : A time-stratified case-crossover study. PLoS Med 17:1–15. https://doi.org/10.1371/journal.pmed.1003176

    Article  Google Scholar 

  26. Martínez-Solanas E, Basagaña X (2019) Temporal changes in the effects of ambient temperatures on hospital admissions in Spain. PLoS One 14:1–26. https://doi.org/10.1371/journal.pone.0218262

    CAS  Article  Google Scholar 

  27. Sheridan S, Allen M (2018) Temporal trends in human vulnerability to excessive heat. Environ Res Lett 13:043001. https://doi.org/10.1088/1748-9326/aab214

    Article  Google Scholar 

  28. Son J, Liu JC, Bell ML (2019) Temperature-related mortality : a systematic review and investigation of effect modifiers. Environ Res Lett 14:073004. https://doi.org/10.1088/1748-9326/ab1cdb

    Article  Google Scholar 

  29. Sun S, Cao W, Mason TG, Ran J, Qiu H, Li J, Yang Y, Lin H, Tian L (2019) Increased susceptibility to heat for respiratory hospitalizations in Hong Kong. Sci Total Environ 666:204. https://doi.org/10.1016/j.scitotenv.2019.02.229

    CAS  Article  Google Scholar 

  30. Tian Y, Liu H, Id YS et al (2019) Association between temperature variability and daily hospital admissions for cause-specific cardiovascular disease in urban China : a national time-series study. PLoS Med 16:e1002738. https://doi.org/10.1371/journal.pmed.1002738

    Article  Google Scholar 

  31. Tobías A, Armstrong B, Gasparrini A (2017) Investigating uncertainty in the minimum mortality temperature. Epidemiology 28:72–76. https://doi.org/10.1097/EDE.0000000000000567

    Article  Google Scholar 

  32. Vardoulakis S, Dear K, Hajat S, Heaviside C, Eggen B, McMichael AJ (2014) Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ Health Perspect 122:1285–1293. https://doi.org/10.1289/ehp.1307524

    Article  Google Scholar 

  33. Varotsos CA, Efstathiou MN (2015) Symmetric scaling properties in global surface air temperature anomalies. Theor Appl Clim 121:767–773. https://doi.org/10.1007/s00704-014-1274-0

    Article  Google Scholar 

  34. Varotsos CA, Efstathiou MN (2019) Has global warming already arrived? J Atmos Solar-Terrestrial Phys 182:31–38. https://doi.org/10.1016/j.jastp.2018.10.020

    Article  Google Scholar 

  35. Varotsos CA, Mazei YA (2019) Future temperature extremes will be more harmful: a new critical factor for improved forecasts. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16204015

  36. Varotsos C, Mazei Y, Efstathiou M (2020a) Paleoecological and recent data show a steady temporal evolution of carbon dioxide and temperature. Atmos Pollut Res 11(4):714–722. https://doi.org/10.1016/j.apr.2019.12.022

  37. Varotsos C, Mazei Y, Novenko E et al (2020b) A new climate nowcasting tool based on paleoclimatic data. Sustainability 12(14):5546. https://doi.org/10.3390/su12145546

  38. Vicedo-cabrera AM, Forsberg B, Tobias A et al (2016) Associations of inter- and intraday temperature change with mortality. Orig Contrib 183:286–293. https://doi.org/10.1093/aje/kwv205

    Article  Google Scholar 

  39. Wang Y, Liu Y, Ye D, Li N, Bi P, Tong S, Wang Y, Cheng Y, Li Y, Yao X (2020) High temperatures and emergency department visits in 18 sites with different climatic characteristics in China : risk assessment and attributable fraction identi fi cation. Environ Int 136:105486. https://doi.org/10.1016/j.envint.2020.105486

    Article  Google Scholar 

  40. Yang J, Zhou M, Li M, Liu X, Yin P, Sun Q, Wang J, Wu H, Wang B, Liu Q (2018) Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities *. Environ Pollut 239:631–637. https://doi.org/10.1016/j.envpol.2018.04.090

    CAS  Article  Google Scholar 

  41. Zhan Z, Yu Y, Qian J et al (2018) Effects of ambient temperature on ambulance emergency call-outs in the subtropical city of Shenzhen, China. PLoS One 13:E0207187. https://doi.org/10.1371/journal.pone.0207187

    CAS  Article  Google Scholar 

  42. Zhan Z, Zhao Y, Pang S, Zhong X, Wu C, Ding Z (2017) Temperature change between neighboring days and mortality in United States : a nationwide study. Sci Total Environ 21890:152–1161. https://doi.org/10.1016/j.scitotenv.2017.01.177

    CAS  Article  Google Scholar 

  43. Zhang Y, Xiang Q, Yu C, Bao J, Ho HC, Sun S, Ding Z, Hu K, Zhang L (2019) Mortality risk and burden associated with temperature variability in China, United Kingdom and United States : comparative analysis of daily and hourly exposure metrics. Environ Res J 179:108771. https://doi.org/10.1016/j.envres.2019.108771

    CAS  Article  Google Scholar 

  44. Zhang Y, Yu Y, Peng M, Meng R, Hu K, Yu C (2018) Temporal and seasonal variations of mortality burden associated with hourly temperature variability : a nationwide investigation in England and Wales. Environ Int 115:325–333. https://doi.org/10.1016/j.envint.2018.03.036

    CAS  Article  Google Scholar 

  45. Zhao Q, Coelho MSZS, Li S, Saldiva PHN, Hu K, Abramson MJ, Huxley RR, Guo Y (2018) Spatiotemporal and demographic variation in the association between temperature variability and hospitalizations in Brazil during 2000 – 2015 : a nationwide time-series study. Environ Int 120:345–353. https://doi.org/10.1016/j.envint.2018.08.021

    Article  Google Scholar 

  46. Zhao Q, Li S, Coelho MSZS, Saldiva PHN, Hu K, Arblaster JM, Nicholls N, Huxley RR, Abramson MJ, Guo Y (2019) Geographic, demographic, and temporal variations in the association between heat exposure and hospitalization in Brazil : a nationwide study between 2000 and 2015. Environ Health Perspect 127:1–9. https://doi.org/10.1289/EHP3889

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

WW analyzed the data and was a major contributor in writing the manuscript; BC wrote and critically revised the manuscript; GW critically revised the manuscript; YW, QZ, and HZ collected data.

Corresponding author

Correspondence to Juying Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lotfi Aleya

Supplementary Information

ESM 1

(DOCX 2111 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Chen, B., Wu, G. et al. Increased susceptibility to temperature variation for non-accidental emergency ambulance dispatches in Shenzhen, China. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12942-6

Download citation

Keywords

  • Temporal change
  • Climate change
  • Temperature variation
  • Ambulance dispatches
  • Attributable burden