Treatment of a clinical analysis laboratory wastewater from a hospital by photo-Fenton process at four radiation settings and toxicity response

Abstract

The photo-Fenton process was performed with four radiation settings to treat clinical analysis laboratory wastewater (CALWW) from a hospital, with the aim of evaluating its treatability and acute toxicity response in Daphnia magna and Lactuca sativa. The experiments were performed in a borosilicate bench-scale conventional reactor for 320 min. The light radiation was suspended 13 cm from the CALWW surface for mild radiation or immersed into the matrix for intense radiation. All photo-Fenton experimental conditions were set at pH 3.0, 15 mg L-1 of Fe2+, and initial H2O2 of 300 mg L-1. The initial Fe2+ concentration was converted to Fe3+ ion in the first 15 min of photooxidation for all processes. Furthermore, the intense radiation processes regenerated Fe2+ faster than other systems. Neither mild UVA-Vis nor mild UVC-Vis radiation significantly treated the organic matter or phenols. However, mild UVC-Vis resulted in a higher biodegradability transformation rate (biochemical oxygen demand/chemical oxygen demand 0.51), indicating that it could treat more recalcitrant organic matter than mild UVA-Vis. Intense radiation proved to be more efficient, with a chemical oxygen demand removal rate of 95% for intense UVA-Vis and 99% for intense UVC-Vis treatments. All treatments reduced acute toxicity in D. magna. Moreover, photo-Fenton treatment by intense UVA-Vis decreased toxicity ~98%, compared to mild and intense UVC-Vis, ~75%. Both of the mild radiation treatments inhibited the germination of L. sativa seeds. The intense UVA-Vis photo-Fenton treatment was the only setting that removed phytotoxicity, resulting in a non-significant effect, and the intense UVC-Vis treatment inhibited the seed growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. ABNT (1987) NBR 9800 Critérios para lançamento de efluentes líquidos industriais no sistema coletor público de esgoto sanitário. ABNT NBR 9800 9–11

  2. ABNT (2016a) NBR 15469 Ecotoxicology – collection, preservation and preparation samples. ABNT, Rio de Janeiro (in portuguese). ABNT NBR 15469

  3. ABNT (2016b) NBR 12713 Ecotoxicologia aquática — Toxicidade aguda — Método de ensaio com Daphnia spp (Crustacea, Cladocera) Aquatic. ABNT NBR 12713 1–23

  4. Akin BS (2016) Contaminant properties of hospital clinical laboratory wastewater: a physiochemical and microbiological assessment. J Environ Prot (Irvine, Calif) 07:635–642. https://doi.org/10.4236/jep.2016.75057

    CAS  Article  Google Scholar 

  5. Amarasiri M, Sano D, Suzuki S (2019) Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered. Crit Rev Environ Sci Technol:1–44. https://doi.org/10.1080/10643389.2019.1692611

  6. APHA, Baird RB, Eaton AD, Rice EW (2017) Standard method for the examination for water and wastewater, 23rd edn, Washington

  7. Berto J, Rochenbach GC, Barreiros MAB et al (2009) Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters. Ecotoxicol Environ Saf 72:1076–1081. https://doi.org/10.1016/j.ecoenv.2008.12.002

    CAS  Article  Google Scholar 

  8. Blaise C, Gagné F, Eullaffroy P, J-F F (2006) Ecotoxicity of selected pharmaceuticals of urban origin discharged to the Saint-Lawrence river (Québec, Canada): a review. Braz J Aquat Sci Technol 10:29–51

    Article  Google Scholar 

  9. Boucenna A, Oturan N, Chabani M et al (2019) Degradation of Nystatin in aqueous medium by coupling UV-C irradiation, H2O2 photolysis, and photo-Fenton processes. Environ Sci Pollut Res 26:23149–23161. https://doi.org/10.1007/s11356-019-05530-2

    CAS  Article  Google Scholar 

  10. Carlos L, Nichela D, Triszcz JM et al (2010) Nitration of nitrobenzene in Fenton’s processes. Chemosphere 80:340–345. https://doi.org/10.1016/j.chemosphere.2010.03.034

    CAS  Article  Google Scholar 

  11. Carraro E, Bonetta S, Bertino C et al (2016) Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. J Environ Manag 168:185–199. https://doi.org/10.1016/j.jenvman.2015.11.021

    CAS  Article  Google Scholar 

  12. de Oliveira DM, Cavalcante RP, da Silva L d M et al (2019) Identification of intermediates, acute toxicity removal, and kinetics investigation to the ametryn treatment by direct photolysis (UV 254 ), UV 254 /H 2 O 2 , Fenton, and photo-Fenton processes. Environ Sci Pollut Res 26:4348–4366. https://doi.org/10.1007/s11356-018-1342-6

    CAS  Article  Google Scholar 

  13. Dévier MH, Mazellier P, Aït-Aïssa S, Budzinski H (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. Comptes Rendus Chim 14:766–779. https://doi.org/10.1016/j.crci.2011.04.006

    CAS  Article  Google Scholar 

  14. Duan W, Meng F, Cui H et al (2018) Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol Environ Saf 157:441–456. https://doi.org/10.1016/j.ecoenv.2018.03.089

    CAS  Article  Google Scholar 

  15. Freitas AM, Rivas G, Campos-Mañas MC et al (2017) Ecotoxicity evaluation of a WWTP effluent treated by solar photo-Fenton at neutral pH in a raceway pond reactor. Environ Sci Pollut Res 24:1093–1104. https://doi.org/10.1007/s11356-016-7101-7

    CAS  Article  Google Scholar 

  16. Garcia JC, Simionato JI, Almeida V d C et al (2009) Evolutive follow-up of the photocatalytic degradation of real textile effluents in TiO2 and TiO2/H2O2 systems and their toxic effects on Lactuca sativa seedlings. J Braz Chem Soc 20:1589–1597. https://doi.org/10.1590/S0103-50532009000900005

    CAS  Article  Google Scholar 

  17. Gmurek M, Gomes JF, Martins RC, Quinta-Ferreira RM (2019) Comparison of radical-driven technologies applied for paraben mixture degradation: mechanism, biodegradability, toxicity and cost assessment. Environ Sci Pollut Res 26:37174–37192. https://doi.org/10.1007/s11356-019-06703-9

    CAS  Article  Google Scholar 

  18. Gmurek M, Olak-Kucharczyk M, Ledakowicz S (2017) Photochemical decomposition of endocrine disrupting compounds – a review. Chem Eng J 310:437–456. https://doi.org/10.1016/j.cej.2016.05.014

    CAS  Article  Google Scholar 

  19. ISO (1988) 6332 Water quality — Determination of iron — Spectrometric method using 1,10-phenanthroline. 1–4

  20. Kajitvichyanukul P, Suntronvipart N (2006) Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method. J Hazard Mater 138:384–391. https://doi.org/10.1016/j.jhazmat.2006.05.064

    CAS  Article  Google Scholar 

  21. Khan AH, Khan NA, Ahmed S et al (2020a) Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. J Clean Prod 269. https://doi.org/10.1016/j.jclepro.2020.122411

  22. Khan NA, Khan SU, Ahmed S et al (2020b) Recent trends in disposal and treatment technologies of emerging-pollutants- a critical review. TrAC - Trends Anal Chem 122:115744. https://doi.org/10.1016/j.trac.2019.115744

    CAS  Article  Google Scholar 

  23. Lado Ribeiro AR, Moreira NFF, Li Puma G, Silva AMT (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173. https://doi.org/10.1016/j.cej.2019.01.080

    CAS  Article  Google Scholar 

  24. Lai WWP, Chuang YC, Lin AYC (2017) The effects and the toxicity increases caused by bicarbonate, chloride, and other water components during the UV/TiO2 degradation of oxazaphosphorine drugs. Environ Sci Pollut Res 24:14595–14604. https://doi.org/10.1007/s11356-017-9005-6

    CAS  Article  Google Scholar 

  25. Loubiere K, Oelgemoeller M, Aillet T et al (2016) Continuous-flow photochemistry: a need for chemical engineering. Chem Eng Process Process Intensif 104:120–132. https://doi.org/10.1016/j.cep.2016.02.008

    CAS  Article  Google Scholar 

  26. Lyu J, Park J, Kumar Pandey L et al (2018) Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol Environ Saf 149:225–232. https://doi.org/10.1016/j.ecoenv.2017.11.006

    CAS  Article  Google Scholar 

  27. Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15. https://doi.org/10.1016/S0926-3373(01)00315-0

    CAS  Article  Google Scholar 

  28. Malato S, Fernández-Ibáñez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. https://doi.org/10.1016/j.cattod.2009.06.018

    CAS  Article  Google Scholar 

  29. Metcalf & Eddy Inc, Tchobanoglous G, Stensel H et al (2014) Wastewater engineering - treatment and reuse, 4th edn. McGrawHill Education, New York

  30. Michael I, Hapeshi E, Michael C et al (2012a) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634. https://doi.org/10.1016/j.watres.2012.07.049

    CAS  Article  Google Scholar 

  31. Michael I, Hapeshi E, Osorio V et al (2012b) Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: transformation products and ecotoxicity evaluation. Sci Total Environ 430:167–173. https://doi.org/10.1016/j.scitotenv.2012.05.003

    CAS  Article  Google Scholar 

  32. Ortega-Gómez E, Esteban García B, Ballesteros Martín MM et al (2014) Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH. Water Res 63:316–324. https://doi.org/10.1016/j.watres.2014.05.034

    CAS  Article  Google Scholar 

  33. Pérez-Moya M, Kaisto T, Navarro M, del Valle LJ (2017) Study of the degradation performance (TOC, BOD, and toxicity) of bisphenol A by the photo-Fenton process. Environ Sci Pollut Res 24:6241–6251. https://doi.org/10.1007/s11356-016-7386-6

    CAS  Article  Google Scholar 

  34. Perini JA d L, Silva BC e, Tonetti AL, Nogueira RFP (2017) Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environ Sci Pollut Res 24:6233–6240. https://doi.org/10.1007/s11356-016-7416-4

    CAS  Article  Google Scholar 

  35. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. https://doi.org/10.1080/10643380500326564

    CAS  Article  Google Scholar 

  36. Priac A, Badot PM, Crini G (2017) Évaluation de la phytotoxicité d’eaux de rejets via Lactuca sativa: paramètres des tests de germination et d’élongation. Comptes Rendus - Biol 340:188–194. https://doi.org/10.1016/j.crvi.2017.01.002

    Article  Google Scholar 

  37. Pro J, Ortiz JA, Boleas S et al (2003) Effect assessment of antimicrobial pharmaceuticals on the aquatic plant Lemna minor. Bull Environ Contam Toxicol 70:290–295. https://doi.org/10.1007/s00128-002-0208-1

    CAS  Article  Google Scholar 

  38. Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69. https://doi.org/10.1016/j.jiec.2014.05.005

    CAS  Article  Google Scholar 

  39. Ridsdill-Smith TJ (1988) Survival and reproduction of Musca vetustissima walker (Diptera: Muscidae) and a scarabaeine dung beetle in dung of cattle treated with avermectin B1. Aust J Entomol 27:175–178. https://doi.org/10.1111/j.1440-6055.1988.tb01517.x

    Article  Google Scholar 

  40. Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4340. https://doi.org/10.1016/j.watres.2011.05.035

    CAS  Article  Google Scholar 

  41. Rizzo L, Malato S, Antakyali D et al (2019a) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265

    CAS  Article  Google Scholar 

  42. Rizzo L, Malato S, Antakyali D et al (2019b) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/j.scitotenv.2018.11.265

    CAS  Article  Google Scholar 

  43. Schick R, Strasser I, Stabel HH (1997) Shic 1997 - Fluorometric determination of low h202 concentration in water.pdf. 31:1371–1378

  44. Serna-Galvis EA, Silva-Agredo J, Botero-Coy AM et al (2019) Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Sci Total Environ 670:623–632. https://doi.org/10.1016/j.scitotenv.2019.03.153

    CAS  Article  Google Scholar 

  45. Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photochem Photobiol A Chem 104:1–12. https://doi.org/10.1016/S1010-6030(96)04538-8

    CAS  Article  Google Scholar 

  46. Sobrero MC, Ronco A (2008) Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L. Imta:55–67. https://doi.org/10.1017/CBO9781107415324.004

  47. Torres MA, Micheletto J, de Liz MV et al (2020) Microcystis aeruginosa inactivation and microcystin-LR degradation by the photo-Fenton process at the initial near-neutral pH. Photochem Photobiol Sci. https://doi.org/10.1039/d0pp00177e

  48. Utzig LM, Lima RM, Gomes MF et al (2019) Ecotoxicity response of chlorpyrifos in Aedes aegypti larvae and Lactuca sativa seeds after UV/H 2 O 2 and UVC oxidation. Ecotoxicol Environ Saf 169:449–456. https://doi.org/10.1016/j.ecoenv.2018.11.003

    CAS  Article  Google Scholar 

  49. Velo-Gala I, Pirán-Montaño JA, Rivera-Utrilla J et al (2017) Advanced oxidation processes based on the use of UVC and simulated solar radiation to remove the antibiotic tinidazole from water. Chem Eng J 323:605–617. https://doi.org/10.1016/j.cej.2017.04.102

    CAS  Article  Google Scholar 

  50. Verlicchi P, Al Aukidy M, Zambello E (2015) What have we learned from worldwide experiences on the management and treatment of hospital effluent? - An overview and a discussion on perspectives. Sci Total Environ 514:467–491. https://doi.org/10.1016/j.scitotenv.2015.02.020

    CAS  Article  Google Scholar 

  51. Vinge SL, Shaheen SW, Sharpless CM, Linden KG (2020) Nitrate with benefits: Optimizing radical production during UV water treatment. Environ Sci Water Res Technol 6:1163–1175. https://doi.org/10.1039/c9ew01138b

    CAS  Article  Google Scholar 

  52. Young BJ, Riera NI, Beily ME et al (2012) Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicol Environ Saf 76:182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019

    CAS  Article  Google Scholar 

  53. Zuo Y, Deng Y (1998) The near-UV absorption constants for nitrite ion in aqueous solution. Chemosphere 36:181–188. https://doi.org/10.1016/S0045-6535(97)10028-5

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are also grateful to the multiuser laboratory of chemical analyses (LAMAQ-UTFPR), the multiuser laboratory of equipment and environmental analyses (LAMEAA-UTFPR).

Funding

The authors greatly acknowledge scholarship supported by The Federal University of Technology-Paraná and the Brazilian funding agencies: Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological (CNPq-Protocol number 458362/2014-0), and Fundação Araucária.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and degradation experiments were performed by Roberson Davis Sá and Adriana Patricia Rodríguez-Pérez. Vinicius de Carvalho Soares de Paula performed the ecotoxicological bioassays. The analyses of the results and the first draft of the manuscript were written by Fernando Rodrigues da Silva and Liziê Daniela Tentler Prola and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Karina Querne de Carvalho, Adriane Martins de Freitas, and Marcus Vinicius de Liz supervised the project and revised the manuscript and responsible to funding acquisition.

Corresponding author

Correspondence to Liziê Daniela Tentler Prola.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Vítor Pais Vilar

Supplementary Information

ESM 1

(DOCX 164 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sá, R.D., Rodríguez-Pérez, A.P., Rodrigues-Silva, F. et al. Treatment of a clinical analysis laboratory wastewater from a hospital by photo-Fenton process at four radiation settings and toxicity response. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12860-7

Download citation

Keywords

  • Mild radiation
  • Intense radiation
  • Biodegradability
  • AOP
  • Daphnia magna
  • Lactuca sativa