An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane

Abstract

This study deals with the development of alumina-supported cobalt (Co/Al2O3) catalysts with remarkable performance in dry reforming of methane (DRM) and least carbon deposition. The influence of Co content, calcination, and reduction temperatures on the physicochemical attributes and catalyst activity of the developed catalysts was extensively studied. For this purpose, several characterization techniques including ICP-MS, H2 pulse chemisorption, HRTEM, H2-TPR, N2 adsorption desorption, and TGA were implemented, and the properties of the developed catalysts were carefully analyzed. The impact of reaction temperature, feed gas ratio, and gas hourly space velocity (GHSV) on the reactants conversion and products yield was investigated. Use of 10%Co/Al2O3 catalyst, calcined at 500°C and reduced under H2 at 900°C in DRM reaction at 850°C, CH4/CO2 ratio of 1:1, and GHSV of 6 L.g−1.h−1 resulted in a remarkable catalytic activity and sustainable performance in long-term operation where great CO2 (96%) and CH4 (98%) conversions and high H2 (83%) and CO (91%) yields with a negligible carbon deposition (3 wt%) were attained in 100-h on-stream reaction. The good performance of the developed catalyst in DRM reaction was attributed to the small Co particle size with well-dispersion on the alumina support which increased the catalytic activity and also the strong metal-support interaction which inhibited any serious metal sintering and enhanced the catalyst stability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Adamu S, Bawah A-R, Muraza O, Malaibari Z, Hossain MM (2020) Effects of metal support interaction on dry reforming of methane over Ni/Ce-Al2O3 catalysts. Can J Chem Eng 98:2425–2434. https://doi.org/10.1002/cjce.23769

    CAS  Article  Google Scholar 

  2. Ayodele BV, Khan MR, Cheng CK (2016) Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. Int J Hydrog Energy 41:198–207. https://doi.org/10.1016/j.ijhydene.2015.10.049

    CAS  Article  Google Scholar 

  3. Bach VR, de Camargo AC, de Souza TL, Cardozo-Filho L, Alves HJ (2019) Dry reforming of methane over Ni/MgO–Al2O3 catalysts: thermodynamic equilibrium analysis and experimental application. Int J Hydrog Energy 45:5252–5263. https://doi.org/10.1016/j.ijhydene.2019.07.200

    CAS  Article  Google Scholar 

  4. Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. Wiley, Hoboken

    Google Scholar 

  5. Bian Z, Kawi S (2018) Sandwich-like silica@Ni@silica multicore–shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation. ChemCatChem 10:320–328. https://doi.org/10.1002/cctc.201701024

    CAS  Article  Google Scholar 

  6. Chai R, Fan S, Zhang Z, Chen P, Zhao G, Liu Y, Lu Y (2017) Free-standing NiO-MgO-Al2O3 nanosheets derived from layered double hydroxides grown onto FeCrAl-fiber as structured catalysts for dry reforming of methane. ACS Sustain Chem Eng 5:4517–4522. https://doi.org/10.1021/acssuschemeng.7b00717

    CAS  Article  Google Scholar 

  7. Chaikittisilp W (2018) Functional Porous Materials. In: Ariga K, Ebara M (eds) Materials nanoarchitectonics. Wiley, Germany, pp 187–198. https://doi.org/10.1002/9783527808311.ch10

    Google Scholar 

  8. Chen Q, Zhang J, Pan B, Kong W, Chen Y, Zhang W, Sun Y (2017) Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane. Chem Eng J 320:63–73. https://doi.org/10.1016/j.cej.2017.03.029

    CAS  Article  Google Scholar 

  9. Chung KS, Massoth FE (1980) Studies on molybdena-alumina catalysts: VII. Effect of cobalt on catalyst states and reducibility. J Catal 64:320–331. https://doi.org/10.1016/0021-9517(80)90506-0

    CAS  Article  Google Scholar 

  10. Daza CE, Gallego J, Mondragón F, Moreno S, Molina R (2010) High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. J Fuel Chem 89:592–603. https://doi.org/10.1016/j.fuel.2009.10.010

    CAS  Article  Google Scholar 

  11. Ewbank J, Kovarik L, Kenvin C, Sievers C (2014) Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane. Green Chem 16:885–896. https://doi.org/10.1039/C3GC41782D

    CAS  Article  Google Scholar 

  12. Fan M-S, Abdullah AZ, Bhatia S (2010) Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: preparation, characterization and activity studies. Appl Catal B-Environ 100:365–377. https://doi.org/10.1016/j.apcatb.2010.08.013

    CAS  Article  Google Scholar 

  13. Ferreira AC, Branco JB (2020) Dry reforming of methane over nanostructured nickel – actinide (Th, U) bimetallic oxides. Int J Hydrog Energy 45:14375–14382. https://doi.org/10.1016/j.ijhydene.2020.03.176

    CAS  Article  Google Scholar 

  14. Figueredo GP, Medeiros RLBA, Macedo HP, de Oliveira ÂAS, Braga RM, Mercury JMR, Melo MAF, Melo DMA (2018) A comparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO3 and commercial α-Al2O3. Int J Hydrog Energy 43:11022–11037. https://doi.org/10.1016/j.ijhydene.2018.04.224

    CAS  Article  Google Scholar 

  15. Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragón F (2008) Dry reforming of methane over LaNi1−yByO3±δ (B = Mg, Co) perovskites used as catalyst precursor. Appl Catal A-Gen 334:251–258. https://doi.org/10.1016/j.apcata.2007.10.010

    CAS  Article  Google Scholar 

  16. Grzona CB, Lick ID, Castellón ER, Ponzi MI, Ponzi EN (2010) Cobalt and KNO3 supported on alumina catalysts for diesel soot combustion. Mater Chem Phys 123:557–562. https://doi.org/10.1016/j.matchemphys.2010.05.014

    CAS  Article  Google Scholar 

  17. Han J, Liang Y, Qin L, Zhao B, Wang H, Wang Y (2019) Ni@HC Core–shell structured catalysts for dry reforming of methane and carbon dioxide. Catal Lett 149:3224–3237. https://doi.org/10.1007/s10562-019-02889-2

    CAS  Article  Google Scholar 

  18. Hassani Rad SJ, Haghighi M, Alizadeh Eslami A, Rahmani F, Rahemi N (2016) Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: effect of process conditions, synthesis method and support composition. Int J Hydrog Energy 1–16. https://doi.org/10.1016/j.ijhydene.2016.02.002

  19. Horlyck J, Sara M, Lovell EC, Amal R, Scott J (2019) Effect of metal-support interactions in mixed Co/Al catalysts for dry reforming of methane. ChemCatChem 11:3432–3440. https://doi.org/10.1002/cctc.201900638

    CAS  Article  Google Scholar 

  20. Horváth É, Baán K, Varga E, Oszkó A, Vágó Á, Törő M, Erdőhelyi A (2017) Dry reforming of CH4 on Co/Al2O3 catalysts reduced at different temperatures. Catal Today 281:233–240. https://doi.org/10.1016/j.cattod.2016.04.007

    CAS  Article  Google Scholar 

  21. Hou Z, Yashima T (2004) Supported Co catalysts for methane reforming with CO2. React Kinet Catal Lett 81:153–159. https://doi.org/10.1023/B:REAC.0000016529.84565.e5

    CAS  Article  Google Scholar 

  22. Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S (2015) One-pot synthesis of NiO–MgO nanocatalysts for CO2 reforming of methane: the influence of active metal content on catalytic performance. J Nat Gas Sci Eng 27:1165–1173. https://doi.org/10.1016/j.jngse.2015.09.065

    CAS  Article  Google Scholar 

  23. Khavarian M, Chai S-P, Mohamed AR (2015) The effects of process parameters on carbon dioxide reforming of methane over Co–Mo–MgO/MWCNTs nanocomposite catalysts. J Fuel Chem 158:129–138. https://doi.org/10.1016/j.fuel.2015.05.021

    CAS  Article  Google Scholar 

  24. Khoja AH, Tahir M, Amin NAS (2018) Cold plasma dielectric barrier discharge reactor for dry reforming of methane over Ni/ɤ-Al2O3-MgO nanocomposite. Fuel Process Technol 178:166–179. https://doi.org/10.1016/j.fuproc.2018.05.030

    CAS  Article  Google Scholar 

  25. Leilei Xu JZ, Wang F, Wang L, Wu K, Xu G, Chen W (2015) One-step synthesis of ordered mesoporous CoAl2O4 spinel-based metal oxides for CO2 reforming of CH4. R Soc Chem 5:48256–48268. https://doi.org/10.1039/C5RA07249B

    CAS  Article  Google Scholar 

  26. Li Z, Kathiraser Y, Kawi S (2015) Facile synthesis of high surface area yolk–shell Ni@ Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem 7:160–168. https://doi.org/10.1002/cctc.201402673

    CAS  Article  Google Scholar 

  27. Li K, Chang X, Pei C, Li X, Chen S, Zhang X, Assabumrungrat S, Zhao ZJ, Zeng L, Gong J (2019) Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane. Appl Catal B-Environ 259:118092. https://doi.org/10.1016/j.apcatb.2019.118092

    CAS  Article  Google Scholar 

  28. Li Z, Lin Q, Li M, Cao J, Liu F, Pan H, Wang Z, Kawi S (2020) Recent advances in process and catalyst for CO2 reforming of methane. Renew Sust Energ Rev 134:110312. https://doi.org/10.1016/j.rser.2020.110312

    CAS  Article  Google Scholar 

  29. Liang C, Tian H, Gao G, Zhang S, Liu Q, Dong D, Hu X (2020) Methanation of CO2 over alumina supported nickel or cobalt catalysts: effects of the coordination between metal and support on formation of the reaction intermediates. Int J Hydrog Energy 45:531–543. https://doi.org/10.1016/j.ijhydene.2019.10.195

    CAS  Article  Google Scholar 

  30. Luisetto I, Tuti S, Di Bartolomeo E (2012) Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int J Hydrog Energy 37:15992–15999. https://doi.org/10.1016/j.ijhydene.2012.08.006

    CAS  Article  Google Scholar 

  31. Miller ME, Misture ST (2010) Idealizing γ-Al2O3: in situ determination of nonstoichiometric spinel defect structure. J Phys Chem C 114:13039–13046. https://doi.org/10.1021/jp102759y

    CAS  Article  Google Scholar 

  32. Mirzaei F, Rezaei M, Meshkani F, Fattah Z (2015) Carbon dioxide reforming of methane for syngas production over Co–MgO mixed oxide nanocatalysts. J Ind Eng Chem 21:662–667. https://doi.org/10.1016/j.jiec.2014.03.034

    CAS  Article  Google Scholar 

  33. Mozammel T, Dumbre D, Hubesch R, Yadav GD, Selvakannan PR, Bhargava SK (2020) Carbon dioxide reforming of methane over mesoporous alumina supported Ni(Co), Ni(Rh) bimetallic, and Ni(CoRh) trimetallic catalysts: role of nanoalloying in improving the stability and nature of coking. Energy Fuel 34:16433–16444. https://doi.org/10.1021/acs.energyfuels.0c03249

    CAS  Article  Google Scholar 

  34. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database, national institute of standard and technology. https://doi.org/10.18434/T4T88K

  35. Nikoo MK, Amin NAS (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 92:678–691. https://doi.org/10.1016/j.fuproc.2010.11.027

    CAS  Article  Google Scholar 

  36. Park J-H, Yeo S, Chang T-S (2018) Effect of supports on the performance of Co-based catalysts in methane dry reforming. J CO2 Util 26:465–475. https://doi.org/10.1016/j.jcou.2018.06.002

    CAS  Article  Google Scholar 

  37. Passos AR, Martins L, Pulcinelli SH, Santilli CV, Briois V (2017) Correlation of sol–gel alumina-supported cobalt catalyst processing to cobalt speciation, ethanol steam reforming activity, and stability. ChemCatChem 9:3918–3929. https://doi.org/10.1002/cctc.201700319

    CAS  Article  Google Scholar 

  38. Penke YK, Anantharaman G, Ramkumar J, Kar KK (2017) Aluminum substituted cobalt ferrite (Co−Al−Fe) nano adsorbent for arsenic adsorption in aqueous systems and detailed redox behavior study with Xps. ACS Appl Mater Interfaces 9:11587–11598. https://doi.org/10.1021/acsami.6b16414

    CAS  Article  Google Scholar 

  39. Rosset M, Féris LA, Perez-Lopez OW (2020) Biogas dry reforming over Ni-M-Al (M = K, Na and Li) layered double hydroxide-derived catalysts. Catal Today. https://doi.org/10.1016/j.cattod.2020.08.018

  40. Roy PS, Raju ASK, Kim K (2015) Influence of S/C ratio and temperature on steam reforming of model biogas over a metal-foam-coated Pd–Rh/(CeZrO2–Al2O3) catalyst. J Fuel Chem 139:314–320. https://doi.org/10.1016/j.fuel.2014.08.062

    CAS  Article  Google Scholar 

  41. Sajjadi SM, Haghighi M, Rahmani F (2014) Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni–Co/Al2O3–ZrO2 nanocatalyst: effect of MgO addition via sol–gel method on catalytic properties and hydrogen yield. J Sol-Gel Sci Techn 70:111–124. https://doi.org/10.1007/s10971-014-3280-1

    CAS  Article  Google Scholar 

  42. San-José-Alonso D, Juan-Juan J, Illán-Gómez M, Román-Martínez M (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A-Gen 371:54–59. https://doi.org/10.1016/j.apcata.2009.09.026

    CAS  Article  Google Scholar 

  43. Serrano-Lotina A, Daza L (2014) Influence of the operating parameters over dry reforming of methane to syngas. Int J Hydrog Energy 39:4089–4094. https://doi.org/10.1016/j.ijhydene.2013.05.135

    CAS  Article  Google Scholar 

  44. Serrano-Lotina A, Rodríguez L, Muñoz G, Daza L (2011) Biogas reforming on La-promoted NiMgAl catalysts derived from hydrotalcite-like precursors. Catal Commun 196:4404–4410. https://doi.org/10.1016/j.jpowsour.2010.10.107

    CAS  Article  Google Scholar 

  45. Shi C, Zhang P (2015) Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane. Appl Catal B-Environ 170–171:43–52. https://doi.org/10.1016/j.apcatb.2015.01.034

    CAS  Article  Google Scholar 

  46. Siang TJ, Singh S, Omoregbe O, Bach LG, Phuc NHH, Vo D-VN (2018) Hydrogen production from CH4 dry reforming over bimetallic Ni–Co/Al2O3 catalyst. J Energy Inst 91:683–694. https://doi.org/10.1016/j.joei.2017.06.001

    CAS  Article  Google Scholar 

  47. Son IH, Lee SJ, Song IY, Jeon WS, Jung I, Yun DJ, Jeong DW, Shim JO, Jang WJ, Roh HS (2014) Study on coke formation over Ni/γ-Al2O3, Co-Ni/γ-Al2O3, and Mg-Co-Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. J Fuel Chem 136:194–200. https://doi.org/10.1016/j.fuel.2014.07.041

    CAS  Article  Google Scholar 

  48. Son IH, Kwon S, Park JH, Lee SJ (2016) High coke-resistance MgAl2O4 islands decorated catalyst with minimizing sintering in carbon dioxide reforming of methane. Nano Energy 19:58–67. https://doi.org/10.1016/j.nanoen.2015.11.007

    CAS  Article  Google Scholar 

  49. Theofanidis SA, Galvita VV, Poelman H, Marin GB (2015) Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catal 5:3028–3039. https://doi.org/10.1021/acscatal.5b00357

    CAS  Article  Google Scholar 

  50. Theofanidis SA, Batchu R, Galvita VV, Poelman H, Marin GB (2016) Carbon gasification from Fe–Ni catalysts after methane dry reforming. Appl Catal B-Environ 185:42–55. https://doi.org/10.1016/j.apcatb.2015.12.006

    CAS  Article  Google Scholar 

  51. Thommes M, Kaneko K, Neimark Alexander V, Olivier James P, Rodriguez-Reinoso F, Rouquerol J, Sing Kenneth SW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    CAS  Article  Google Scholar 

  52. Turap Y, Wang I, Fu T, Wu Y, Wang Y, Wang W (2020) Co–Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane. Int J Hydrog Energy 45:6538–6548. https://doi.org/10.1016/j.ijhydene.2019.12.223

    CAS  Article  Google Scholar 

  53. Wong YJ, Koh MK, Khavarian M, Mohamed AR (2017) Investigation on cobalt aluminate as an oxygen carrier catalyst for dry reforming of methane. Int J Hydrog Energy 42:28363–28376. https://doi.org/10.1016/j.ijhydene.2017.09.151

    CAS  Article  Google Scholar 

  54. Wong YJ, Koh MK, Khairudin NF, Ichikawa S, Morikawa Y, Mohamed AR (2019) Development of Co supported on Co−Al spinel catalysts from exsolution of amorphous Co−Al oxides for carbon dioxide reforming of methane. ChemCatChem 11:5593–5605. https://doi.org/10.1002/cctc.201901098

    CAS  Article  Google Scholar 

  55. Xiancai L, Min W, Zhihua L, Fei H (2005) Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl Catal A-Gen 290:81–86. https://doi.org/10.1016/j.apcata.2005.05.021

    CAS  Article  Google Scholar 

  56. Xiong H, Zhang Y, Liew K, Li J (2005) Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis. J Mol Catal A Chem 231:145–151. https://doi.org/10.1016/j.molcata.2004.12.033

    CAS  Article  Google Scholar 

  57. Yan J, Kung MC, Sachtler WMH, Kung HH (1997) Co/Al2O3Lean NOxReduction Catalyst. J Catal 172:178–186. https://doi.org/10.1006/jcat.1997.1869

    CAS  Article  Google Scholar 

  58. Zhang J, Li F (2015) Coke-resistant Ni@SiO2 catalyst for dry reforming of methane. Appl Catal B 176–177:513–521. https://doi.org/10.1016/j.apcatb.2015.04.039

    CAS  Article  Google Scholar 

  59. Zhang L, Wang F, Zhu J, Han B, Fan W, Zhao L, Cai W, Li Z, Xu L, Yu H, Shi W (2019) CO2 reforming with methane reaction over Ni@SiO2 catalysts coupled by size effect and metal-support interaction. Fuel 256:115954. https://doi.org/10.1016/j.fuel.2019.115954

    CAS  Article  Google Scholar 

  60. Zhang M, Zhang J, Zhou Z, Chen S, Zhang T, Song F, Zhang Q, Tsubaki N, Tan Y, Han Y (2020) Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst. Appl Catal B-Environ 264:118522. https://doi.org/10.1016/j.apcatb.2019.118522

    CAS  Article  Google Scholar 

  61. Zhao Y, Kang Y, Li H, Li H (2018) CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability. Green Chem 20:2781–2787. https://doi.org/10.1039/C8GC00743H

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by USM-NanoMITE under the Long-Term Research Grant Scheme (LRGS) (203/PJKIMIA/6720009).

Funding

This research was supported by USM-NanoMITE under the Long-Term Research Grant Scheme (LRGS) under Grant number (203/PJKIMIA/6720009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

Conceptualization, methodology, analysis and investigation, and preparing the original draft, Nor Fazila Khairudin; review, revise, and editing the manuscript, Maedeh Mohammadi; funding acquisition and supervision, Abdul Rahman Mohamed.

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Santiago V. Luis

Supplementary Information

ESM 1

(DOCX 978 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khairudin, N.F., Mohammadi, M. & Mohamed, A.R. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12794-0

Download citation

Keywords

  • Carbon deposition
  • Cobalt-based catalyst
  • Dry reforming of methane
  • Physicochemical properties
  • Structural characterization
  • Catalyst stability