Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques

Abstract

Acrylamide is a water-soluble toxicant found in high-protein and carbohydrate-containing foods exposed to high temperature like bread as the staple foodstuff. This toxicant is mainly formed via Maillard reaction. The potential adverse effects of acrylamide especially possible carcinogenicity in human through dietary exposure necessitate its monitoring. Regarding the existence of its precursors in wheat bread formulation as well as extreme consumption of bread by most population and diversity of bread types, its acrylamide level needs to be investigated. The indicative value for acrylamide in wheat bread is set at 80 μg/kg. Consequently, its determination using liquid chromatography–tandem mass spectrometry (LC-MS/MS), gas chromatography–mass spectrometry (GC-MS), or capillary electrophoresis can be helpful considering both the risk assessment and quality control aspects. In this respect, methods based on LC-MS/MS show good recovery and within laboratory repeatability with a limit of detection of 3–20 μg/kg and limit of quantification of 10–50 μg/kg which is suitable for the immediate requirements for food product monitoring and calculation of consumer exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability

Not applicable

References

  1. Alpözen E, Güven G, Özdestan Ö, Üren A (2015) Determination of acrylamide in three different bread types by an in-house validated LC-MS/MS method. Acta Alimentaria 44:211–220. https://doi.org/10.1556/AAlim.2013.3333

    CAS  Article  Google Scholar 

  2. Altissimi MS, Roila R, Branciari R, Miraglia D, Ranucci D, Framboas M, Haouet N (2017) Contribution of street food on dietary acrylamide exposure by youth aged nineteen to thirty in Perugia, Italy. Italian journal of food safety 6. https://doi.org/10.4081/ijfs.2017.6881

  3. Altunay N, Gürkan R, Orhan U (2016) A preconcentration method for indirect determination of acrylamide from chips, crackers and cereal-based baby foods using flame atomic absorption spectrometry. Talanta 161:143–150. https://doi.org/10.1016/j.talanta.2016.08.053

    CAS  Article  Google Scholar 

  4. Arab M, Sohrabvandi S, Khorshidian N, Mortazavian AM (2019) Combined effects of salt-related variables on qualitative characteristics of probiotic fermented milk. Current Nutrition & Food Science 15:234–242. https://doi.org/10.2174/1573401314666180123151007

    CAS  Article  Google Scholar 

  5. Arab M, Sohrabvandi S, Mortazavian AM, Mohammadi R, Tavirani MR (2012) Reduction of aflatoxin in fermented milks during production and storage. Toxin Reviews 31:44–53. https://doi.org/10.3109/15569543.2012.738350

    CAS  Article  Google Scholar 

  6. Arisseto AP, de Figueiredo Toledo MC, Govaert Y, van Loco J, Fraselle S, Degroodt J-M, Caroba DCR (2009) Contribution of selected foods to acrylamide intake by a population of Brazilian adolescents. LWT-Food Science and Technology 42:207–211. https://doi.org/10.1016/j.lwt.2008.05.024

    CAS  Article  Google Scholar 

  7. Bartkiene E, Bartkevics V, Lele V, Pugajeva I, Zavistanaviciute P, Mickiene R, Zadeike D, Juodeikiene G (2018) A concept of mould spoilage prevention and acrylamide reduction in wheat bread: application of lactobacilli in combination with a cranberry coating. Food Control 91:284–293. https://doi.org/10.1016/j.foodcont.2018.04.019

    CAS  Article  Google Scholar 

  8. Bartkiene E, Bartkevics V, Pugajeva I, Krungleviciute V, Mayrhofer S, Domig K (2017a) The contribution of P. acidilactici, L. plantarum, and L. curvatus starters and L-(+)-lactic acid to the acrylamide content and quality parameters of mixed rye–wheat bread. LWT 80:43–50. https://doi.org/10.1016/j.lwt.2017.02.005

    CAS  Article  Google Scholar 

  9. Bartkiene E, Bartkevics V, Pugajeva I, Krungleviciute V, Mayrhofer S, Domig K (2017b) Parameters of rye, wheat, barley, and oat sourdoughs fermented with Lactobacillus plantarum LUHS 135 that influence the quality of mixed rye–wheat bread, including acrylamide formation. International Journal of Food Science & Technology 52:1473–1482. https://doi.org/10.1111/ijfs.13412

    CAS  Article  Google Scholar 

  10. Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, Bartkevics V (2013) Effect of fermented Helianthus tuberosus L. tubers on acrylamide formation and quality properties of wheat bread. LWT-Food Science and Technology 54:414–420. https://doi.org/10.1016/j.lwt.2013.05.015

    CAS  Article  Google Scholar 

  11. Bermudo E, Nunez O, Puignou L, Galceran M (2006) Analysis of acrylamide in food samples by capillary zone electrophoresis. Journal of Chromatography A 1120:199–204. https://doi.org/10.1016/j.chroma.2005.10.074

    CAS  Article  Google Scholar 

  12. Bortolomeazzi R, Munari M, Anese M, Verardo G (2012) Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC–MS/MS. Food chemistry 135:2687–2693. https://doi.org/10.1016/j.foodchem.2012.07.057

    CAS  Article  Google Scholar 

  13. Boyacı Gündüz CP, Cengiz MF (2015) Acrylamide contents of commonly consumed bread types in Turkey. International journal of food properties 18:833–841. https://doi.org/10.1080/10942912.2013.877028

    CAS  Article  Google Scholar 

  14. Branciari R, Roila R, Ranucci D, Altissimi MS, Mercuri ML, Haouet NM (2019) Estimation of acrylamide exposure in Italian schoolchildren consuming a canteen menu: health concern in three age groups. International journal of food sciences and nutrition:1-10. https://doi.org/10.1080/09637486.2019.1624692.

  15. Capuano E, Garofalo G, Napolitano A, Zielinski H, Fogliano V (2010) Rye flour extraction rate affects Maillard reaction development, antioxidant activity, and acrylamide formation in bread crisps. Cereal chemistry 87:131–136. https://doi.org/10.1094/CCHEM-87-2-0131

    CAS  Article  Google Scholar 

  16. Castle L, Eriksson S (2005) Analytical methods used to measure acrylamide concentrations in foods. Journal of AOAC international 88:274–284. https://doi.org/10.1093/jaoac/88.1.274

    CAS  Article  Google Scholar 

  17. Cengiz MF, Gündüz CPB (2013) Acrylamide exposure among Turkish toddlers from selected cereal-based baby food samples. Food and chemical toxicology 60:514–519. https://doi.org/10.1016/j.fct.2013.08.018

    CAS  Article  Google Scholar 

  18. Claeys W, Baert K, Mestdagh F, Vercammen J, Daenens P, de Meulenaer B, Maghuin-Rogister G, Huyghebaert A (2010) Assessment of the acrylamide intake of the Belgian population and the effect of mitigation strategies. Food Additives and Contaminants 27:1199–1207. https://doi.org/10.1080/19440049.2010.489577

    CAS  Article  Google Scholar 

  19. Claus A, Carle R, Schieber A (2008a) Acrylamide in cereal products: a review. Journal of Cereal science 47:118–133. https://doi.org/10.1016/j.jcs.2007.06.016

    CAS  Article  Google Scholar 

  20. Claus A, Mongili M, Weisz G, Schieber A, Carle R (2008b) Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls. Journal of cereal science 47:546–554. https://doi.org/10.1016/j.jcs.2007.06.011

    CAS  Article  Google Scholar 

  21. Crawford LM, Kahlon TS, Chiu MCM, Wang SC, Friedman M (2019a) Acrylamide content of experimental and commercial flatbreads. Journal of food science 84:659–666. https://doi.org/10.1111/1750-3841.14456

    CAS  Article  Google Scholar 

  22. Crawford LM, Kahlon TS, Wang SC, Friedman M (2019b) Acrylamide content of experimental flatbreads prepared from potato, quinoa, and wheat flours with added fruit and vegetable peels and mushroom powders. Foods 8:228. https://doi.org/10.3390/foods8070228

    CAS  Article  Google Scholar 

  23. Curtis TY, Halford NG (2016) Reducing the acrylamide-forming potential of wheat. Food and Energy Security 5:153–164. https://doi.org/10.1002/fes3.85

    Article  Google Scholar 

  24. Dastmalchi F, Razavi S (2016) Comparison of the impact of Lactobacillus casei and Lactobacillus rhamnosus on acrylamide reduction in flat and bulk bread. Quality Assurance and Safety of Crops & Foods 8:483–492. https://doi.org/10.3920/QAS2015.0643

    CAS  Article  Google Scholar 

  25. Dastmalchi F, Razavi SH, Faraji M, Labbafi M (2016) Effect of Lactobacillus casei-casei and Lactobacillus reuteri on acrylamide formation in flat bread and bread roll. Journal of food science and technology 53:1531–1539. https://doi.org/10.1007/s13197-015-2118-3

    CAS  Article  Google Scholar 

  26. Diana M, Rafecas M, Quílez J (2014) Free amino acids, acrylamide and biogenic amines in gamma-aminobutyric acid enriched sourdough and commercial breads. Journal of cereal science 60:639–644. https://doi.org/10.1016/j.jcs.2014.06.009

    CAS  Article  Google Scholar 

  27. Dias FFG, dos Santos Aguilar JG, Sato HH (2019) L-Asparaginase from Aspergillus spp.: production based on kinetics, thermal stability and biochemical characterization 3. Biotech 9:289. https://doi.org/10.1007/s13205-019-1814-5

  28. Dunovská L, Čajka T, Hajšlová J, Holadová K (2006) Direct determination of acrylamide in food by gas chromatography–high-resolution time-of-flight mass spectrometry. Analytica chimica acta 578:234–240. https://doi.org/10.1016/j.aca.2006.07.001

    CAS  Article  Google Scholar 

  29. Dybing E, Sanner T (2003) Risk assessment of acrylamide in foods. Toxicological Sciences 75:7–15. https://doi.org/10.1093/toxsci/kfg165

    CAS  Article  Google Scholar 

  30. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2015) Scientific opinion on acrylamide in food. EFSA Journal 13:4104. https://doi.org/10.2903/j.efsa.2015.4104

    CAS  Article  Google Scholar 

  31. Elbashir AA, Omar MMA, Ibrahim WAW, Schmitz OJ, Aboul-Enein HY (2014) Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Critical reviews in analytical chemistry 44:107–141. https://doi.org/10.1080/10408347.2013.829388

    CAS  Article  Google Scholar 

  32. Eslamizad S, Kobarfard F, Tabib K, Yazdanpanah H, Salamzadeh J (2020) Development of a Sensitive and Rapid Method for Determination of Acrylamide in Bread by LC-MS/MS and Analysis of Real Samples in Iran IR. Iranian Journal of Pharmaceutical Research: IJPR 19:413–423. https://doi.org/10.22037/ijpr.2019.111994.13474

  33. Eslamizad S, Kobarfard F, Tsitsimpikou C, Tsatsakis A, Tabib K, Yazdanpanah H (2019) Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food and chemical toxicology 126:162–168. https://doi.org/10.1016/j.fct.2019.02.019

    CAS  Article  Google Scholar 

  34. Faraji M, Hamdamali M, Aryanasab F, Shabanian M (2018) 2-Naphthalenthiol derivatization followed by dispersive liquid–liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography. Journal of Chromatography A 1558:14–20. https://doi.org/10.1016/j.chroma.2018.05.021

    CAS  Article  Google Scholar 

  35. Fernandes CL, Carvalho DO, Guido LF (2019) Determination of acrylamide in biscuits by high-resolution orbitrap mass spectrometry: a novel application. Foods 8:597. https://doi.org/10.3390/foods8120597

    CAS  Article  Google Scholar 

  36. Fink M, Andersson R, Rosén J, Åman P (2006) Effect of added asparagine and glycine on acrylamide content in yeast-leavened bread. Cereal chemistry 83:218–222. https://doi.org/10.1094/CC-83-0218

    CAS  Article  Google Scholar 

  37. Frigon MD, Liu D (2016) Effect of high salinity on yeast activated sludge reactor operation. Water Science and Technology 74:2124–2134. https://doi.org/10.2166/wst.2016.391

    CAS  Article  Google Scholar 

  38. Fu Z, Yoo MJ, Zhou W, Zhang L, Chen Y, Lu J (2018) Effect of (−)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chemistry 242:162–168. https://doi.org/10.1016/j.foodchem.2017.09.050

    CAS  Article  Google Scholar 

  39. Gökmen V (2015) Acrylamide in food: analysis, content and potential health effects. Academic Press

  40. Granvogl M, Schieberle P (2006) Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. Journal of Agricultural and Food Chemistry 54:5933–5938. https://doi.org/10.1021/jf061150h

    CAS  Article  Google Scholar 

  41. Hamzalıoğlu A, Mogol BA, Gökmen V (2019) Acrylamide: an overview of the chemistry and occurrence in foods. https://doi.org/10.1016/b978-0-08-100596-5.21817-9

  42. Hidalgo FJ, Delgado RM, Navarro JL, Zamora R (2010) Asparagine decarboxylation by lipid oxidation products in model systems. Journal of agricultural and food chemistry 58:10512–10517. https://doi.org/10.1021/jf102026c

    CAS  Article  Google Scholar 

  43. Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2007) A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiology and Prevention Biomarkers 16:2304–2313. https://doi.org/10.1158/1055-9965.epi-07-0581

    CAS  Article  Google Scholar 

  44. Hu Q, Xu X, Fu Y, Li Y (2015) Rapid methods for detecting acrylamide in thermally processed foods: a review. Food Control 56:135–146. https://doi.org/10.1016/j.foodcont.2015.03.021

    CAS  Article  Google Scholar 

  45. Jesus S, Delgado I, Rego A, Brandão C, Santos RG, Bordado J, Castanheira I (2018) Determination of acrylamide in Portuguese bread by UPLC-MS/MS: metrological and chemometric tools. ACTA IMEKO 7:96-101. https://doi.org/10.21014/acta_imeko.v7i2.453.

  46. Jin C, Wu X, Zhang Y (2013) Relationship between antioxidants and acrylamide formation: a review. Food research international 51:611–620. https://doi.org/10.1016/j.foodres.2012.12.047

    CAS  Article  Google Scholar 

  47. Jing Y, Li X, Hu X, Ma Z, Liu L, Ma X (2019) Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the Science of Food and Agriculture. 99:6482–6489. https://doi.org/10.1002/jsfa.9927

    CAS  Article  Google Scholar 

  48. Jozinović A, Šarkanj B, Ačkar Đ, Panak Balentić J, Šubarić D, Cvetković T, Ranilović J, Guberac S, Babić J (2019) Simultaneous determination of acrylamide and hydroxymethylfurfural in extruded products by LC-MS/MS method. Molecules 24:1971. https://doi.org/10.3390/molecules24101971

    CAS  Article  Google Scholar 

  49. Kafouris D et al (2018) Determination of acrylamide in food using a UPLC–MS/MS method: results of the official control and dietary exposure assessment in Cyprus Food Additives & Contaminants: Part A 35:1928-1939. https://doi.org/10.1080/19440049.2018.1508893

  50. Kamankesh M, Nematollahi A, Mohammadi A, Ferdowsi R (2020) Investigation of composition, temperature, and heating time in the formation of acrylamide in snack: central composite design optimization and microextraction coupled with gas chromatography–mass spectrometry. Food Analytical Methods:1-10. https://doi.org/10.1007/s12161-020-01849-6

  51. Kataoka H, Ishizaki A, Nonaka Y, Saito K (2009) Developments and applications of capillary microextraction techniques: a review. Analytica Chimica Acta 655:8–29. https://doi.org/10.1016/j.aca.2009.09.032

    CAS  Article  Google Scholar 

  52. Katsaiti T, Granby K (2016) Mitigation of the processing contaminant acrylamide in bread by reducing asparagine in the bread dough. Food Additives & Contaminants: Part A 33:1402–1410. https://doi.org/10.1080/19440049.2016.1217068

    CAS  Article  Google Scholar 

  53. Keramat J, LeBail A, Prost C, Jafari M (2011a) Acrylamide in baking products: a review article. Food and Bioprocess Technology 4:530–543. https://doi.org/10.1007/s11947-010-0495-1

    CAS  Article  Google Scholar 

  54. Keramat J, LeBail A, Prost C, Soltanizadeh N (2011b) Acrylamide in foods: chemistry and analysis. A review. Food and bioprocess technology 4:340–363. https://doi.org/10.1007/s11947-010-0470-x

    CAS  Article  Google Scholar 

  55. Khorshidian N, Yousefi M, Shadnoush M, Siadat SD, Mohammadi M, Mortazavian AM (2020) Using probiotics for mitigation of acrylamide in food products: a mini review. Current Opinion in Food Science 32:67–75. https://doi.org/10.1016/j.cofs.2020.01.011

    Article  Google Scholar 

  56. Kim SH, Hwang J-H, Lee K-G (2011) Analysis of acrylamide using gas chromatography-nitrogen phosphorus detector (GC-NPD). Food Science and Biotechnology 20:835–839. https://doi.org/10.1007/s10068-011-0116-4

    CAS  Article  Google Scholar 

  57. Komprda T, Pridal A, Mikulíková R, Svoboda Z, Cwiková O, Nedomová Š, Sýkora V (2017) A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality. Journal of the Science of Food and Agriculture 97:889–895. https://doi.org/10.1002/jsfa.7811

    CAS  Article  Google Scholar 

  58. Konings E et al (2003) Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food and Chemical Toxicology 41:1569–1579. https://doi.org/10.1016/S0278-6915(03)00187-X

    CAS  Article  Google Scholar 

  59. Kruchina-Bogdanov I, Nilova L, Malyutenkova S, Naumenko N. Using capillary electrophoresis to determine acrylamide in bakery products. In: International scientific and practical conference "Agro-SMART-Smart solutions for agriculture" (Agro-SMART 2018), 2018. Atlantis Press.

  60. Ledl F, Schleicher E (1990) New aspects of the Maillard reaction in foods and in the human body. Angewandte Chemie International Edition in English 29:565–594. https://doi.org/10.1002/anie.199005653

    Article  Google Scholar 

  61. Lee K-J, Lee GH, Kim HS, Oh MS, Chu S, Hwang IJ, Lee JY, Choi A, Kim CI, Park HM (2015) Determination of heterocyclic amines and acrylamide in agricultural products with liquid chromatography-tandem mass spectrometry. Toxicological Research 31:255–264. https://doi.org/10.5487/TR.2015.31.3.255

    CAS  Article  Google Scholar 

  62. Lee M-R, Chang L-Y, Dou J (2007) Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography–positive chemical ionization tandem mass spectrometry. Analytica Chimica. Acta 582:19-23. https://doi.org/10.1016/j.aca.2006.08.042.

  63. Li J, Zuo J, Qiao X, Zhang Y, Xu Z (2016) Effect of garlic powder on acrylamide formation in a low-moisture model system and bread baking. Journal of the Science of Food and Agriculture 96:893–899. https://doi.org/10.1002/jsfa.7162

    CAS  Article  Google Scholar 

  64. Lineback DR, Coughlin JR, Stadler RH (2012) Acrylamide in foods: a review of the science and future considerations. Annual review of food science and technology 3:15–35. https://doi.org/10.1146/annurev-food-022811-101114

    CAS  Article  Google Scholar 

  65. Lineback DR, Jones JM (2011) Acrylamide in foods: data and more questions. Nutrition Today 46:216–223. https://doi.org/10.1097/NT.0b013e3182303fdb

    Article  Google Scholar 

  66. Liu J, Liu X, Man Y, Liu Y (2018) Reduction of acrylamide content in bread crust by starch coating. Journal of the Science of Food and Agriculture 98:336–345. https://doi.org/10.1002/jsfa.8476

    CAS  Article  Google Scholar 

  67. Liu S-C, Yang D-J, Jin S-Y, Hsu C-H, Chen S-L (2008) Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems. Food Chemistry 108:533–541. https://doi.org/10.1016/j.foodchem.2007.11.006

    CAS  Article  Google Scholar 

  68. Liyanage DWK (2019) Effects of nitrogen treatments and processing conditions on acrylamide formation in potato chips or French fries. University of Lethbridge, Department of Biological Sciences, Lethbridge, Alta.

    Google Scholar 

  69. Longhua X, Limin Z, Xuguang Q, Zhixiang X, Jiaming S (2012) Determination of trace acrylamide in potato chip and bread crust based on SPE and HPLC. Chromatographia 75:269–274. https://doi.org/10.1007/s10337-012-2195-7

    CAS  Article  Google Scholar 

  70. Marconi O, Bravi E, Perretti G, Martini R, Montanari L, Fantozzi P (2010) Acrylamide risk in food products: the shortbread case study. Analytical Methods 2:1686–1691. https://doi.org/10.1039/C0AY00191K

    CAS  Article  Google Scholar 

  71. Meybodi NM, Mirmoghtadaie L, Sheidaei Z, Mortazavian AM (2019a) Wheat bread: potential approach to fortify its lysine content. Current Nutrition & Food Science 15:630–637. https://doi.org/10.2174/1573401315666190228125241

    CAS  Article  Google Scholar 

  72. Meybodi NM, Mortazavian AM, Mirmoghtadaie L, Hosseini SM, Yasini SA, Azizi MH, Nodoushan SM (2019b) Effects of microbial transglutaminase and fermentation type on improvement of lysine availability in wheat bread: a response surface methodology. Applied Food Biotechnology 6:151–164. https://doi.org/10.22037/afb.v6i3.24359

    CAS  Article  Google Scholar 

  73. Mildner-Szkudlarz S, Różańska M, Piechowska P, Waśkiewicz A, Zawirska-Wojtasiak R (2019) Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chemistry:125008. https://doi.org/10.1016/j.foodchem.2019.125008.

  74. Mills C, Tlustos C, Evans R, Matthews W (2008) Dietary acrylamide exposure estimates for the United Kingdom and Ireland: comparison between semiprobabilistic and probabilistic exposure models. Journal of agricultural and food chemistry 56:6039–6045. https://doi.org/10.1021/jf073050x

    CAS  Article  Google Scholar 

  75. Mojska H, Gielecińska I, Szponar L, Ołtarzewski M (2010) Estimation of the dietary acrylamide exposure of the Polish population. Food and Chemical Toxicology 48:2090–2096. https://doi.org/10.1016/j.fct.2010.05.009

    CAS  Article  Google Scholar 

  76. Mollakhalili Meybodi N, Mohammadifar M, Feizollahi E (2015) Gluten-free bread quality: a review of the improving factors. Journal of food quality and hazards control 2:81–85

    Google Scholar 

  77. Motaghi M, Seyedain AM, Honarvar M, Mehrabani M, Baghizadeh A (2012) Determination of acrylamide in selected types of Iranian breads by SPME technique. Journal of Food Biosciences and Technology 2:57–64

    Google Scholar 

  78. Mousavi Khaneghah A, Fakhri Y, Nematollahi A, Seilani F, Vasseghian Y (2020) The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Reviews International:1-19. https://doi.org/10.1080/87559129.2020.1791175.

  79. Mucci LA, Wilson KM (2008) Acrylamide intake through diet and human cancer risk. Journal of agricultural and food chemistry 56:6013–6019. https://doi.org/10.1021/jf703747b

    CAS  Article  Google Scholar 

  80. Nachi I, Fhoula I, Smida I, Ben Taher I, Chouaibi M, Jaunbergs J, Bartkevics V, Hassouna M (2018) Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT 92:435–441. https://doi.org/10.1016/j.lwt.2018.02.061

    CAS  Article  Google Scholar 

  81. Namir M, Rabie MA, Rabie NA, Ramadan MF (2018) Optimizing the addition of functional plant extracts and baking conditions to develop acrylamide-free pita bread. Journal of Food Protection 81:1696–1706. https://doi.org/10.4315/0362-028X.JFP-18-150

    CAS  Article  Google Scholar 

  82. Nasiri Esfahani B, Kadivar M, Shahedi M, Soleimanian-Zad S (2017) Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Additives & Contaminants: Part A 34:1904–1914. https://doi.org/10.1080/19440049.2017.1378444

    CAS  Article  Google Scholar 

  83. Negoiță M, Catană M, Iorga E, Catană L, Adascalului A, Belc N (2014) Determination of acrylamide in bread by gas chromatography–tandem mass spectrometry. Romanian Biotechnological Letters 19:9561

    Google Scholar 

  84. Negoiță M, Culețu A (2016) Application of an accurate and validated method for identification and quantification of acrylamide in bread, biscuits and other bakery products using GC-MS/MS system. Journal of the Brazilian Chemical Society 27:1782–1791. https://doi.org/10.5935/0103-5053.20160059

    CAS  Article  Google Scholar 

  85. Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A (2019) Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. Journal of Cereal Science 87:157–164. https://doi.org/10.1016/j.jcs.2019.03.019

    CAS  Article  Google Scholar 

  86. Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A, Khaneghah AM (2020a) Acrylamide content of collected food products from Tehran’s market: a risk assessment study. Environmental Science and Pollution Research International. 27:30558–30570. https://doi.org/10.1007/s11356-020-09323-w

    CAS  Article  Google Scholar 

  87. Nematollahi A, Kamankesh M, Hosseini H, Hadian Z, Ghasemi J, Mohammadi A (2020b) Investigation and determination of acrylamide in 24 types of roasted nuts and seeds using microextraction method coupled with gas chromatography–mass spectrometry: central composite design. Journal of Food Measurement and Characterization:1-12. https://doi.org/10.1007/s11694-020-00373-9.

  88. Norouzi E, Kamankesh M, Mohammadi A, Attaran A (2018) Acrylamide in bread samples: determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. Journal of cereal science 79:1–5. https://doi.org/10.1016/j.jcs.2017.09.011

    CAS  Article  Google Scholar 

  89. Oracz J, Nebesny E, Żyżelewicz D (2011) New trends in quantification of acrylamide in food products. Talanta 86:23–34. https://doi.org/10.1016/j.talanta.2011.08.066

    CAS  Article  Google Scholar 

  90. Oroian M, Amariei S, Gutt G (2015) Acrylamide in Romanian food using HPLC-UV and a health risk assessment. Food Additives & Contaminants: Part B 8:136–141. https://doi.org/10.1080/19393210.2015.1010240

    CAS  Article  Google Scholar 

  91. Pan M, Liu K, Yang J, Hong L, Xie X, Wang S (2020) Review of research into the determination of acrylamide in foods. Foods 9:524. https://doi.org/10.3390/foods9040524

    CAS  Article  Google Scholar 

  92. Pedreschi F, Granby K, Risum J (2010) Acrylamide mitigation in potato chips by using NaCl. Food and Bioprocess Technology 3:917–921. https://doi.org/10.1007/s11947-010-0349-x

    CAS  Article  Google Scholar 

  93. Pedreschi F, Mariotti MS, Granby K (2014) Current issues in dietary acrylamide: formation, mitigation and risk assessment. Journal of the Science of Food and Agriculture 94:9–20. https://doi.org/10.1002/jsfa.6349

    CAS  Article  Google Scholar 

  94. Przygodzka M, Piskula MK, Kukurová K, Ciesarová Z, Bednarikova A, Zieliński H (2015) Factors influencing acrylamide formation in rye, wheat and spelt breads. Journal of cereal science 65:96–102. https://doi.org/10.1016/j.jcs.2015.06.011

    CAS  Article  Google Scholar 

  95. Pundir CS, Yadav N, Chhillar AK (2019) Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: a review. Trends in food science & technology. 85:211–225. https://doi.org/10.1016/j.tifs.2019.01.003

    CAS  Article  Google Scholar 

  96. Ray M, Adhikari S, Kundu P (2019) Isolation and characterization of microbial asparaginase to mitigate acrylamide formation in food. Advances in plant & microbial biotechnology. Springer, In, pp 95–100

    Google Scholar 

  97. Roszko MŁ, Szczepańska M, Szymczyk K, Rzepkowska M (2019) Dietary risk evaluation of acrylamide intake with bread in Poland, determined by two comparable cleanup procedures. Food Additives & Contaminants: Part B:1-9. https://doi.org/10.1080/19393210.2019.1666924

  98. Rufián-Henares JA, Morales FJ (2006) Determination of acrylamide in potato chips by a reversed-phase LC–MS method based on a stable isotope dilution assay. Food Chemistry 97:555–562. https://doi.org/10.1016/j.foodchem.2005.06.007

    CAS  Article  Google Scholar 

  99. Sadd PA, Hamlet CG, Liang L (2008) Effectiveness of methods for reducing acrylamide in bakery products. Journal of agricultural and food chemistry 56:6154–6161. https://doi.org/10.1021/jf7037482

    CAS  Article  Google Scholar 

  100. Shahrbabki PE, Hajimohammadi B, Shoeibi S, Elmi M, Yousefzadeh A, Conti GO, Ferrante M, Amirahmadi M, Fakhri Y, Mousavi Khaneghah A (2018) Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS. Food and chemical toxicology 118:361–370. https://doi.org/10.1016/j.fct.2018.05.038

    CAS  Article  Google Scholar 

  101. Shen Y, Chen G, Li Y (2019) Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chemistry 96:545–553. https://doi.org/10.1002/cche.10154

    CAS  Article  Google Scholar 

  102. Sirot V, Hommet F, Tard A, Leblanc J-C (2012) Dietary acrylamide exposure of the French population: results of the second French Total Diet Study. Food and Chemical Toxicology 50:889–894. https://doi.org/10.1016/j.fct.2011.12.033

    CAS  Article  Google Scholar 

  103. Stockmann F, Weber EA, Mast B, Schreiter P, Merkt N, Claupein W, Graeff-Hönninger S (2018) Evaluation of asparagine concentration as an indicator of the acrylamide formation in cereals grown under organic farming conditions. Agronomy 8:294. https://doi.org/10.3390/agronomy8120294

    CAS  Article  Google Scholar 

  104. Stockmann F, Weber EA, Mast B, Schreiter P, Merkt N, Claupein W, Graeff-Hönninger S (2019) Acrylamide-formation potential of cereals: what role does the agronomic management system play? Agronomy 9:584. https://doi.org/10.3390/agronomy9100584

    CAS  Article  Google Scholar 

  105. Sun S-y, Fang Y, Y-m X (2012) A facile detection of acrylamide in starchy food by using a solid extraction-GC strategy. Food Control 26:220–222. https://doi.org/10.1016/j.foodcont.2012.01.028

    CAS  Article  Google Scholar 

  106. Svensson K, Abramsson L, Becker W, Glynn A, Hellenäs K-E, Lind Y, Rosen J (2003) Dietary intake of acrylamide in Sweden. Food and Chemical Toxicology 41:1581–1586. https://doi.org/10.1016/S0278-6915(03)00188-1

    CAS  Article  Google Scholar 

  107. Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of agricultural and food chemistry 50:4998–5006. https://doi.org/10.1021/jf020302f

    CAS  Article  Google Scholar 

  108. Tekkeli SEK, Önal C, Önal A (2012) A review of current methods for the determination of acrylamide in food products. Food Analytical Methods 5:29–39. https://doi.org/10.1007/s12161-011-9277-2

    Article  Google Scholar 

  109. Tuncel NB, Yılmaz N, Şener E (2010) The effect of pea (Pisum sativum L.)-originated asparaginase on acrylamide formation in certain bread types. International journal of food science & technology 45:2470–2476. https://doi.org/10.1111/j.1365-2621.2010.02370.x

    CAS  Article  Google Scholar 

  110. US EPA. (2010). Toxicological Review of Acrylamide (CAS No. 79-06-1) In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-07/009F.

  111. Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP (2018) Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. International journal of biological macromolecules 108:41–46. https://doi.org/10.1016/j.ijbiomac.2017.11.114

    CAS  Article  Google Scholar 

  112. Viiard E, Bessmeltseva M, Simm J, Talve T, Aaspõllu A, Paalme T, Sarand I (2016) Diversity and stability of lactic acid bacteria in rye sourdoughs of four bakeries with different propagation parameters. PloS one 11:e0148325. https://doi.org/10.1371/journal.pone.0148325

    CAS  Article  Google Scholar 

  113. Virk-Baker MK, Nagy TR, Barnes S, Groopman J (2014) Dietary acrylamide and human cancer: a systematic review of literature. Nutrition and cancer 66:774–790. https://doi.org/10.1080/01635581.2014.916323

    CAS  Article  Google Scholar 

  114. Wang H, Lee AW, Shuang S, Choi MM (2008) SPE/HPLC/UV studies on acrylamide in deep-fried flour-based indigenous Chinese foods. Microchemical Journal 89:90–97. https://doi.org/10.1016/j.microc.2007.12.006

    CAS  Article  Google Scholar 

  115. Wang S, Yu J, Xin Q, Wang S, Copeland L (2017) Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control 73:230–236. https://doi.org/10.1016/j.foodcont.2016.08.002

    CAS  Article  Google Scholar 

  116. Weißhaar R (2004) Acrylamide in heated potato products—analytics and formation routes. European Journal of Lipid Science and Technology 106:786–792. https://doi.org/10.1002/ejlt.200400988

    CAS  Article  Google Scholar 

  117. Wenzl T, De La Calle MB, Anklam E (2003) Analytical methods for the determination of acrylamide in food products: a review. Food Additives and Contaminants 20:885–902. https://doi.org/10.1080/02652030310001605051

    CAS  Article  Google Scholar 

  118. Wenzl T, Karasek L, Rosen J, Hellenaes K-E, Crews C, Castle L, Anklam E (2006) Collaborative trial validation study of two methods, one based on high performance liquid chromatography–tandem mass spectrometry and on gas chromatography–mass spectrometry for the determination of acrylamide in bakery and potato products. Journal of Chromatography A 1132:211–218. https://doi.org/10.1016/j.chroma.2006.07.007

    CAS  Article  Google Scholar 

  119. Wyka J, Tajner-Czopek A, Broniecka A, Piotrowska E, Bronkowska M, Biernat J (2015) Estimation of dietary exposure to acrylamide of Polish teenagers from an urban environment. Food and Chemical Toxicology 75:151–155. https://doi.org/10.1016/j.fct.2014.11.003

    CAS  Article  Google Scholar 

  120. Xu F, Oruna-Concha M-J, Elmore JS (2016) The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry 210:163–171. https://doi.org/10.1016/j.foodchem.2016.04.105

    CAS  Article  Google Scholar 

  121. Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, Shi J (2014) Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food and Chemical Toxicology 69:1–12. https://doi.org/10.1016/j.fct.2014.03.037

    CAS  Article  Google Scholar 

  122. Yousefi M, Shariatifar N, Tajabadi Ebrahimi M, Mortazavian AM, Mohammadi A, Khorshidian N, Arab M, Hosseini H (2019) In vitro removal of polycyclic aromatic hydrocarbons by lactic acid bacteria. Journal of applied microbiology 126:954–964. https://doi.org/10.1111/jam.14163

    CAS  Article  Google Scholar 

  123. Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H, Khaneghah AM (2018) Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: a risk assessment study. Food and Chemical Toxicology 118:480–489. https://doi.org/10.1016/j.fct.2018.05.063

    CAS  Article  Google Scholar 

  124. Yusà V, Quintas G, Pardo O, Martí P, Pastor A (2006) Determination of acrylamide in foods by pressurized fluid extraction and liquid chromatography-tandem mass spectrometry used for a survey of Spanish cereal-based foods. Food additives and contaminants 23:237–244. https://doi.org/10.1080/02652030500415678

    CAS  Article  Google Scholar 

  125. Zajac J, Bojar I, Helbin J, Kolarzyk E, Potocki A, Strzemecka J, Owoc A (2013) Dietary acrylamide exposure in chosen population of South Poland. Annals of Agricultural and Environmental Medicine 20

  126. Zhang Y, Dong Y, Ren Y, Zhang Y (2006) Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector. Journal of Chromatography A 1116:209–216. https://doi.org/10.1016/j.chroma.2006.03.042

    CAS  Article  Google Scholar 

  127. Zhang Y, Ren Y, Zhang Y (2009) New research developments on acrylamide: analytical chemistry, formation mechanism, and mitigation recipes. Chemical reviews 109:4375–4397. https://doi.org/10.1021/cr800318s

    CAS  Article  Google Scholar 

  128. Zhang Y, Zhang G, Zhang Y (2005) Occurrence and analytical methods of acrylamide in heat-treated Zhang Y, Zhang G, Zhang Y (2005) Occurrence and analytical methods of acrylamide in heat-treated foods: review and recent developments. Journal of Chromatography A 1075:1–21. https://doi.org/10.1016/j.chroma.2005.03.123

    CAS  Article  Google Scholar 

  129. Zhou X, Fan L-Y, Zhang W, Cao C-X (2007) Separation and determination of acrylamide in potato chips by micellar electrokinetic capillary chromatography. Talanta 71:1541–1545. https://doi.org/10.1016/j.talanta.2006.07.037

    CAS  Article  Google Scholar 

  130. Zhu Y, Li G, Duan Y, Chen S, Zhang C, Li Y (2008) Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector. Food chemistry 109:899–908. https://doi.org/10.1016/j.foodchem.2008.01.020

    CAS  Article  Google Scholar 

  131. Zhu Y, Wang P, Wang F, Zhao M, Hu X, Chen F (2016) The kinetics of the inhibition of acrylamide by glycine in potato model systems. Journal of the Science of Food and Agriculture 96:548–554. https://doi.org/10.1002/jsfa.7122

    CAS  Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

N.M.-M. had the idea for the article, N.K., A.N., and M.A. performed the literature search and data analysis. All authors drafted and/or critically revised the work.

Corresponding authors

Correspondence to Amene Nematollahi or Masoumeh Arab.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mollakhalili-Meybodi, N., Khorshidian, N., Nematollahi, A. et al. Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12775-3

Download citation

Keywords

  • Acrylamide
  • Maillard
  • Bread
  • Risk assessment
  • High-performance liquid chromatography
  • Gas chromatography