In situ preparation of highly dispersed Pd supported on exfoliated layered double hydroxides via nitrogen plasma for 4-nitrophenol reduction

Abstract

In this work, a simple and environmental-friendly nitrogen glow discharge plasma reduction method has been developed for synthesizing palladium nanoparticles (PdNPs) supported on exfoliated Mg-Al-layered double hydroxide (Pd/LDH) catalysts. The as-prepared catalysts were characterized by means of characterizations methods, which contain X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FT-IR). Highly dispersed ultrafine PdNPs were supported on exfoliated, defect-induced LDHs uniformly without agglomeration. The effects of treatment time of nitrogen plasma and Pd loading amount on structure, morphology, and catalytic performance of Pd/LDHs were investigated. The comparisons of structure and morphology between LDHs and Pd/LDHs were also discussed. The average particle size of as-synthesized PdNPs with face-centered cubic structure is 2.01 nm, which ranges from 1.18 to 3.01 nm. Nitrogen plasma cannot only reduce Pd2+, but also exfoliate LDHs, introduce defects, and even destroy the structure of LDHs. The Pd/LDH catalyst with 1 wt% Pd loading under nitrogen plasma treatment for 60 min showed the best catalytic performance in 4-nitrophenol reduction. The turnover frequency (TOF) of as-prepared catalyst is 20-fold higher than that of commercial Pd/C catalyst.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Andrew Lin K-Y, Hsieh Y-T (2015) Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water. J Taiwan Inst Chem Eng 50:223–228. https://doi.org/10.1016/j.jtice.2014.12.008

    CAS  Article  Google Scholar 

  2. Baye AF, Appiah-Ntiamoah R, Kim H (2020) Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and "active support" Fe3O4@C for catalytic reduction of 4-nitrophenol. Sci Total Environ 712:135492. https://doi.org/10.1016/j.scitotenv.2019.135492

    CAS  Article  Google Scholar 

  3. Blanco-Brieva G, Desmedt F, Miquel P, Campos-Martin JM, Fierro JLG (2020) Direct synthesis of hydrogen peroxide without the use of acids or halide promoters in dissolution. Catal Sci Technol 10:2333–2336. https://doi.org/10.1039/d0cy00416b

    CAS  Article  Google Scholar 

  4. Bo L, Quan X, Chen S, Zhao H, Zhao Y (2006) Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Res 40:3061–3068. https://doi.org/10.1016/j.watres.2006.06.030

    CAS  Article  Google Scholar 

  5. Bogaerts A, Neyts EC, Gijbels R, van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy 57:609–658

    Article  Google Scholar 

  6. Chen T et al (2019) Plasma-doping-enhanced overall water splitting: case study of NiCo hydroxide electrocatalyst. Catal Today 337:147–154. https://doi.org/10.1016/j.cattod.2019.04.017

    CAS  Article  Google Scholar 

  7. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater 248:394–400. https://doi.org/10.1016/j.jhazmat.2013.01.030

    CAS  Article  Google Scholar 

  8. Dhanavel S, Revathy TA, Padmanaban A, Narayanan V, Stephen A (2018) Highly efficient catalytic reduction and electrochemical sensing of hazardous 4-nitrophenol using chitosan/rGO/palladium nanocomposite. J Mater Sci Mater Electron 29:14093–14104. https://doi.org/10.1007/s10854-018-9541-y

    CAS  Article  Google Scholar 

  9. Di L, Li Z, Lee B, Park D-W (2017) An alternative atmospheric-pressure cold plasma method for synthesizing Pd/P25 catalysts with the assistance of ethanol. Int J Hydrog Energy 42:11372–11378. https://doi.org/10.1016/j.ijhydene.2017.02.212

    CAS  Article  Google Scholar 

  10. Ding L, Zhang Z, Li Y (2017) Synthesis and catalytic property of urania-palladium-graphene nanohybrids. Sci China Mater 60:399–406. https://doi.org/10.1007/s40843-017-9036-4

    CAS  Article  Google Scholar 

  11. Duan X, Xiao M, Liang S, Zhang Z, Zeng Y, Xi J, Wang S (2017) Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon 119:326–331. https://doi.org/10.1016/j.carbon.2017.04.039

    CAS  Article  Google Scholar 

  12. Fu Y, Huang T, Jia B, Zhu J, Wang X (2017) Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl Catal B Environ 202:430–437. https://doi.org/10.1016/j.apcatb.2016.09.051

    CAS  Article  Google Scholar 

  13. Gopalakrishnan R, Loganathan B, Dinesh S, Raghu K (2017) Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. J Clust Sci 28:2123–2131. https://doi.org/10.1007/s10876-017-1207-z

    CAS  Article  Google Scholar 

  14. Guo M, He J, Li Y, Ma S, Sun X (2016) One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. J Hazard Mater 310:89–97. https://doi.org/10.1016/j.jhazmat.2016.02.016

    CAS  Article  Google Scholar 

  15. Jiang X, Han B, Zhou C, Xia K, Gao Q, Wu J (2018) Cu nanoparticles supported on oxygen-rich boron nitride for the reduction of 4-nitrophenol. ACS Appl Nano Mater 1:6692–6700. https://doi.org/10.1021/acsanm.8b01506

    CAS  Article  Google Scholar 

  16. Kalekar AM, Sharma KKK, Luwang MN, Sharma GK (2016) Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol. RSC Adv 6:11911–11920. https://doi.org/10.1039/c5ra23138h

    CAS  Article  Google Scholar 

  17. Kameda T, Yamazaki T, Yoshioka T (2008) Preparation and characterization of Mg–Al layered double hydroxides intercalated with benzenesulfonate and benzenedisulfonate. Microporous Mesoporous Mater 114:410–415. https://doi.org/10.1016/j.micromeso.2008.01.029

    CAS  Article  Google Scholar 

  18. Kim K-H, Choi JW, Lee H, Moon BC, Park DG, Choi WH, Kang JK (2018) Plasma-mediated fabrication of ultrathin NiAl nanosheets having rich oxygen vacancies and doped nitrogen sites and their utilization for high activity and robust stability in photoelectrochemical water oxidation. J Mater Chem A 6:23283–23288. https://doi.org/10.1039/c8ta08334g

    CAS  Article  Google Scholar 

  19. Kortshagen UR, Sankaran RM, Pereira RN, Girshick SL, Wu JJ, Aydil ES (2016) Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem Rev 116:11061–11127. https://doi.org/10.1021/acs.chemrev.6b00039

    CAS  Article  Google Scholar 

  20. Lam SH, Ung CY, Hlaing MM, Hu J, Li Z-H, Mathavan S, Gong Z (2013) Molecular insights into 4-nitrophenol-induced hepatotoxicity in zebrafish: transcriptomic, histological and targeted gene expression analyses. Biochim Biophys Acta Gen Subj 1830:4778–4789. https://doi.org/10.1016/j.bbagen.2013.06.008

    CAS  Article  Google Scholar 

  21. Li J, Bai X (2016) Ultrasonic synthesis of supported palladium nanoparticles for room-temperature Suzuki–Miyaura coupling. J Mater Sci 51:9108–9122

    CAS  Article  Google Scholar 

  22. Lianzhu Z, Shuxia Z, Xiulan M (2008) Characterization of nitrogen glow discharge plasma via optical emission spectrum simulation. Plasma Sci Technol 10:455–462. https://doi.org/10.1088/1009-0630/10/4/11

    Article  Google Scholar 

  23. Lin F, Doong R-A (2014) Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Appl Catal A: Gen 486:32–41. https://doi.org/10.1016/j.apcata.2014.08.013

    CAS  Article  Google Scholar 

  24. Lin X, Zhou J, Fan Y, Zhan Y, Chen C, Li D, Jiang L (2018) Mg-Al hydrotalcite-supported Pd catalyst for low-temperature CO oxidation: effect of Pd(n+) species and surface hydroxyl groups. Dalton Trans 47:14938–14944. https://doi.org/10.1039/c8dt03012j

    CAS  Article  Google Scholar 

  25. Liu L, Chen R, Liu W, Wu J, Gao D (2016) Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J Hazard Mater 320:96–104. https://doi.org/10.1016/j.jhazmat.2016.08.019

    CAS  Article  Google Scholar 

  26. Liu Y, Bai X, Li S (2018) In-situ preparation of Pd nanoparticles in the pore channel of CMK-3 for Suzuki coupling reaction. Microporous Mesoporous Mater 260:40–44. https://doi.org/10.1016/j.micromeso.2017.06.006

    CAS  Article  Google Scholar 

  27. Liu Y, Zhang M, Hu D, Li R, Hu K, Yan K (2019) Ar plasma-exfoliated ultrathin NiCo-layered double hydroxide nanosheets for enhanced oxygen evolution. ACS Appl Energy Mater 2:1162–1168. https://doi.org/10.1021/acsaem.8b01717

    CAS  Article  Google Scholar 

  28. Mao H et al (2018) Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol. Appl Surf Sci 434:522–533. https://doi.org/10.1016/j.apsusc.2017.10.209

    CAS  Article  Google Scholar 

  29. Mogudi BM, Ncube P, Meijboom R (2016) Catalytic activity of mesoporous cobalt oxides with controlled porosity and crystallite sizes: evaluation using the reduction of 4-nitrophenol. Appl Catal B Environ 198:74–82. https://doi.org/10.1016/j.apcatb.2016.05.051

    CAS  Article  Google Scholar 

  30. Muniz-Miranda M, Muniz-Miranda F, Caporali S, Calisi N, Pedone A (2018) SERS, XPS and DFT investigation on palladium surfaces coated with 2,2′-bipyridine monolayers. Appl Surf Sci 457:98–103. https://doi.org/10.1016/j.apsusc.2018.06.232

    CAS  Article  Google Scholar 

  31. Nguyen TB, Huang CP, Doong R-A (2019) Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl Catal B Environ 240:337–347. https://doi.org/10.1016/j.apcatb.2018.08.035

    CAS  Article  Google Scholar 

  32. Shin H, Oh S, Jun H, Oh M (2020) Porous composites embedded with Cu and Co nanoparticles for efficient catalytic reduction of 4-nitrophenol. Bull Kor Chem Soc. https://doi.org/10.1002/bkcs.12141

  33. Song Y, Wang Q, Meng Y (2016) Plasma syntheses of carbon nanotube-supported Pt-Pd nanoparticles. Plasma Sci Technol 18:438–441. https://doi.org/10.1088/1009-0630/18/4/18

    CAS  Article  Google Scholar 

  34. Su Y, Huang S, Wang T, Peng L, Wang X (2015) Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: a case study of nitrogen doped calcium niobate system. J Hazard Mater 295:119–126. https://doi.org/10.1016/j.jhazmat.2015.04.036

    CAS  Article  Google Scholar 

  35. Tao X, Liu D, Song J, Ye Q, Xu D (2017) Plasma modification of ZnMgAl-LDHs for adsorption property improvement. J Taiwan Inst Chem Eng 74:281–288. https://doi.org/10.1016/j.jtice.2017.02.009

    CAS  Article  Google Scholar 

  36. Tompkins CJ, Michaels AS, Peretti SW (1992) Removal of p-nitrophenol from aqueous solution by membrane-supported solvent extraction. J Membr Sci 75:277–292. https://doi.org/10.1016/0376-7388(92)85069-U

    CAS  Article  Google Scholar 

  37. Van Vaerenbergh B, De Vlieger K, Claeys K, Vanhoutte G, De Clercq J, Vermeir P, Verberckmoes A (2018) The effect of the hydrotalcite structure and nanoparticle size on the catalytic performance of supported palladium nanoparticle catalysts in Suzuki cross-coupling. Appl Catal A Gen 550:236–244. https://doi.org/10.1016/j.apcata.2017.11.018

    CAS  Article  Google Scholar 

  38. Wang L, Xu X, Evans DG, Duan X, Li D (2010) Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide. J Solid State Chem 183:1114–1119. https://doi.org/10.1016/j.jssc.2010.03.022

    CAS  Article  Google Scholar 

  39. Wang X, Bai Z, Zhao D, Chai Y, Guo M, Zhang J (2013) New synthetic route to Mg–Al–CO3 layered double hydroxide using magnesite. Mater Res Bull 48:1228–1232. https://doi.org/10.1016/j.materresbull.2012.11.096

    CAS  Article  Google Scholar 

  40. Wang Y et al (2017) Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew Chem Int Ed Eng 56:5867–5871. https://doi.org/10.1002/anie.201701477

    CAS  Article  Google Scholar 

  41. Wang Y, Xie C, Zhang Z, Liu D, Chen R, Wang S (2018) In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution Reaction. Adv Funct Mater 28:1703363. https://doi.org/10.1002/adfm.201703363

    CAS  Article  Google Scholar 

  42. Wang D et al (2019) Low-temperature plasma technology for electrocatalysis. Chin Chem Lett 30:826–838. https://doi.org/10.1016/j.cclet.2019.03.051

    CAS  Article  Google Scholar 

  43. Wu Z, Zhu Q, Shen C, Tan T (2016) Monodispersed Pd nanoparticles supported on Mg–Al mixed metal oxides: a green and controllable synthesis. ACS Omega 1:498–506. https://doi.org/10.1021/acsomega.6b00082

    CAS  Article  Google Scholar 

  44. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820. https://doi.org/10.1021/jp101125j

    CAS  Article  Google Scholar 

  45. Xia J, He G, Zhang L, Sun X, Wang X (2016) Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Appl Catal B Environ 180:408–415. https://doi.org/10.1016/j.apcatb.2015.06.043

    CAS  Article  Google Scholar 

  46. Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y (2012) Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. J Mater Chem 22:14363–14368. https://doi.org/10.1039/c2jm16479e

    CAS  Article  Google Scholar 

  47. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Appl Catal B Environ 181:371–378. https://doi.org/10.1016/j.apcatb.2015.08.013

    CAS  Article  Google Scholar 

  48. Yin D, Zhang J, Li W, Fu Y (2020) Hyaluronic acid-guided synthesis of pd nanocatalysts for transfer hydrogenation of 4-nitrophenol catalysis. Letters. https://doi.org/10.1007/s10562-020-03455-x

  49. Yu Y, Li Y, Pan Y, C-j L (2012) Fabrication of palladium/graphene oxide composite by plasma reduction at room temperature. Nanoscale Res Lett 7:234. https://doi.org/10.1186/1556-276X-7-234

    CAS  Article  Google Scholar 

  50. Zhang H, Fei C, Zhang D, Tang F (2007) Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J Hazard Mater 145:227–232. https://doi.org/10.1016/j.jhazmat.2006.11.016

    CAS  Article  Google Scholar 

  51. Zhang F, Xiang X, Li F, Duan XJCSFA (2008) Layered double hydroxides as catalytic materials: recent development. Catal Surv Jpn 12:253–265. https://doi.org/10.1007/s10563-008-9061-5

    CAS  Article  Google Scholar 

  52. Zhang M, Chen X, Zhou H, Murugananthan M, Zhang Y (2015) Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chem Eng J 264:39–47. https://doi.org/10.1016/j.cej.2014.11.060

    CAS  Article  Google Scholar 

  53. Zhou A, Li J, Wang G, Xu Q (2020) Preparation of Ag/ZrGP nanocomposites with enhanced catalytic activity for catalytic reduction of 4-nitrophenol. Appl Surf Sci 506:144570. https://doi.org/10.1016/j.apsusc.2019.144570

    CAS  Article  Google Scholar 

  54. Zhu Q-L, Xu Q (2016) Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1:220–245. https://doi.org/10.1016/j.chempr.2016.07.005

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No.21676074 & 21706053]; Project of Heilongjiang Science and Technology [ZY17 A06]; and Science Foundation of Heilongjiang Academy of Sciences [YY2017SH01&ZNBZ2018SH01].

Funding

This work was supported by the National Natural Science Foundation of China [Grant No.21676074 & 21706053]; Project of Heilongjiang Science and Technology [ZY17 A06]; and Science Foundation of Heilongjiang Academy of Sciences [YY2017SH01&ZNBZ2018SH01].

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xuefeng Bai and Teng Liu. The first draft of the manuscript was written by Teng Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Conceptualization: Xuefeng Bai and Teng Liu; methodology: Teng Liu; formal analysis and investigation: Teng Liu; writing—original draft preparation: Teng Liu; writing—review and editing: Xuefeng Ba; funding acquisition: Xuefeng Bai; resources: Xuefeng Bai; supervision: Xuefeng Bai.

Corresponding author

Correspondence to Xuefeng Bai.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Santiago V. Luis

Supplementary Information

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Bai, X. In situ preparation of highly dispersed Pd supported on exfoliated layered double hydroxides via nitrogen plasma for 4-nitrophenol reduction. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12689-0

Download citation

Keywords

  • Ultrafine Pd nanoparticles
  • 4-Nitrophenol
  • Exfoliation
  • LDHs
  • Glow discharge plasma
  • Catalyst