Characterization of a novel marine aerobic denitrifier Vibrio spp. AD2 for efficient nitrate reduction without nitrite accumulation

Abstract

Aerobic denitrifiers have the potential to reduce nitrate in polluted water under aerobic conditions. A salt-tolerant aerobic denitrifier was newly isolated and identified as Vibrio spp. AD2 from a marine recirculating aquaculture system, in which denitrification performance was investigated via single-factor experiment, Box–Behnken experiment, and nitrogen balance analysis. Nitrate reductase genes were identified by polymerase chain reaction. Results showed that strain AD2 removed 98.9% of nitrate-nitrogen (NO3-N) with an initial concentration about 100 mg·L−1 in 48 h without nitrite-nitrogen (NO2-N) accumulation. Nitrogen balance indicated that approximately 17.5% of the initial NO3-N was utilized for bacteria synthesis themselves, 4.02% was converted to organic nitrogen, 39.8% was converted to nitrous oxide (N2O), and 31.1% was converted to nitrogen (N2). Response surface methodology experiment showed that the maximum removal of total nitrogen (TN) occurred under the condition of C/N ratio 11.5, shaking speed 127.9 rpm, and temperature 30.8 °C. Sequence amplification indicated that the denitrification genes, napA and nirS, were present in strain AD2. These results indicated that the strain AD2 has potential applications for removing NO3-N from high-salinity (3%) wastewater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adav SS, Lee DJ (2008) Single-culture aerobic granules with Acinetobacter calcoaceticus. Appl Microbiol Biotechnol 78(3):551–557. https://doi.org/10.1007/s00253-007-1325-x

    CAS  Article  Google Scholar 

  2. Bassin J, Kleerebezem R, Dezotti M, Loosdrecht Van MCM (2012) Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures. Water Res 46(12):3805–3816. https://doi.org/10.1016/j.watres.2012.04.015

    CAS  Article  Google Scholar 

  3. Braker G, Zhou J, Wu L, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl Environ Microbiol 66(5):2096–2104. https://doi.org/10.1128/AEM.66.5.2096-2104.2000

    CAS  Article  Google Scholar 

  4. Brandes JA, Devol AH, Deutsch C (2010) New developments in the marine nitrogen cycle. Chem Rev 107(20):577–589. https://doi.org/10.1002/chin.200720269

    Article  Google Scholar 

  5. Chen Q, Ni J (2012) Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification. J Biosci Bioeng 113(5):619–623. https://doi.org/10.1016/j.jbiosc.2011.12.012

    CAS  Article  Google Scholar 

  6. Chen M, Zhou X, Chen X, Cai Q, Zeng RJ, Zhou S (2020) Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Water Res 172:115501. https://doi.org/10.1016/j.watres.2020.115501

    CAS  Article  Google Scholar 

  7. Duan J, Fang H, Su B, Chen J, Lin J (2015) Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresour Technol 179:421–428. https://doi.org/10.1016/j.biortech.2014.12.057

    CAS  Article  Google Scholar 

  8. Gao H, Schreiber F, Collins G, Jensen MM, Svitlica O, Kostka JE, Lavik G, de Beer D, Zhou HY, Kuypers MM (2010) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4(3):417–426. https://doi.org/10.1038/ismej.2010.166

    CAS  Article  Google Scholar 

  9. Ghorbani F, Younesi H, Ghasempouri SM, Zinatizadeh AA, Amini M, Daneshi A (2008) Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem Eng J 145(2):267–275. https://doi.org/10.1016/j.cej.2008.04.028

    CAS  Article  Google Scholar 

  10. Guo LJ, Zhao B, An Q, Tian M (2016) Characteristics of a novel aerobic denitrifying bacterium, Enterobacter cloacae strain HNR. Appl Biochem Biotechnol 178(5):947–959. https://doi.org/10.1007/s12010-015-1920-8

    CAS  Article  Google Scholar 

  11. Huang HK, Tseng SK (2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl Microbiol Biotechnol 55(1):90–94. https://doi.org/10.1007/s002530000363

    CAS  Article  Google Scholar 

  12. Huang T, Guo L, Zhang H, Su J, Wen G, Zhang K (2015) Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir. Bioresour Technol 196:209–216. https://doi.org/10.1016/j.biortech.2015.07.059

    CAS  Article  Google Scholar 

  13. Kong D, Li W, Deng Y, Ruan Y, Chen G, Yu J, Lin F (2018) Denitrification-potential evaluation and nitrate-removal-pathway analysis of aerobic denitrifier strain Marinobacter hydrocarbonoclasticus RAD-2. Water 10(10):1298. https://doi.org/10.3390/w10101298

    CAS  Article  Google Scholar 

  14. Kotta J, Futter M, Kaasik A, Liversage K, Rätsep M, Barboza FR, Bergström L, Bergström P, Bobsien I, Díaz E, Herkül K, Jonsson PR, Korpinen S, Kraufvelin P, Krost P, Lindahl O, Lindegarth M, Lyngsgaard MM, Mühl M, Sandman AN, Orav-Kotta H, Orlova M, Skov H, Rissanen J, Šiaulys A, Vidakovic A, Virtanen E (2019) Cleaning up seas using blue growth initiatives: mussel farming for eutrophication control in the Baltic Sea. Sci Total Environ 709:136144. https://doi.org/10.1016/j.scitotenv.2019.136144

    CAS  Article  Google Scholar 

  15. Kraft B, Strous M, Tegetmeyer HE (2011) Microbial nitrate respiration-genes, enzymes and environmental distribution. J Biotechnol 155(1):104–117. https://doi.org/10.1016/j.jbiotec.2010.12.025

    CAS  Article  Google Scholar 

  16. Lang X, Li Q, Xu Y, Ji M, Yan G, Guo S (2019) Aerobic denitrifiers with petroleum metabolizing ability isolated from caprolactam sewage treatment pool. Bioresour Technol 290:121719. https://doi.org/10.1016/j.biortech.2019.121719

    CAS  Article  Google Scholar 

  17. Law Y, Ye L, Pan Y, Yuan Z (2012) Nitrous oxide emissions from wastewater treatment processes. Philos Transact R Soc 367(1593):1265–1277. https://doi.org/10.1098/rstb.2011.0317

    CAS  Article  Google Scholar 

  18. Li Y, Ding K, Wen X, Zhang B, Shen B, Yang Y (2016) A novel ammonia-oxidizing archaeon from wastewater treatment plant: its enrichment, physiological and genomic characteristics. Sci Rep 6(1):23747. https://doi.org/10.1038/srep23747

    CAS  Article  Google Scholar 

  19. Li Y, Wang Y, Fu L, Gao Y, Zhao H, Zhou W (2017) Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5. Bioresour Technol 230:103–111. https://doi.org/10.1016/j.biortech.2017.01.049

    CAS  Article  Google Scholar 

  20. Liu Y, Ai GM, Miao LL, Liu ZP (2016) Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresour Technol 206:9–15. https://doi.org/10.1016/j.biortech.2016.01.066

    CAS  Article  Google Scholar 

  21. Marx Sander E, Virdis B, Freguia S (2018) Bioelectrochemical denitrification for the treatment of saltwater recirculating aquaculture streams. ACS Omega 3(4):4252–4261. https://doi.org/10.1021/acsomega.8b00287

    CAS  Article  Google Scholar 

  22. Patureau D, Davison J, Bernet N, Moletta R (1994) Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiol Ecol 14(1):71–78. https://doi.org/10.1111/j.1574-6941.1994.tb00092.x

    CAS  Article  Google Scholar 

  23. Ren J, Wei C, Ma H, Dai M, Fan J, Liu Y, Wu Y, Han R (2019) The nitrogen-removal efficiency of a novel high-efficiency salt-tolerant aerobic denitrifier, Halomonas Alkaliphile HRL-9, isolated from a seawater biofilter. Inter J Env Res Pub Health 16(22):4451. https://doi.org/10.3390/ijerph16224451

    CAS  Article  Google Scholar 

  24. Robertson LA, Kuenen JG (1983) Thiosphaera pantotropha gen. nov. sp. nov. a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Microbiology 129(9):2847–2855. https://doi.org/10.1099/00221287-129-9-2847

    CAS  Article  Google Scholar 

  25. Robertson LA, Kuenen JG (1988) Heterotrophic nitrification in thiosphaera-pantotropha-oxygen-uptake and enzyme studies. Microbiology 134(4):857–863. https://doi.org/10.1099/00221287-134-4-857

    CAS  Article  Google Scholar 

  26. Ruan Y, Taherzadeh MJ, Kong D, Lu H, Zhao H, Xu X, Liu Y, Cai L (2020a) Nitrogen removal performance and metabolic pathways analysis of a novel aerobic denitrifying Halotolerant Pseudomonas balearica strain RAD-17. Microorganisms 8(1):72. https://doi.org/10.3390/microorganisms8010072

    CAS  Article  Google Scholar 

  27. Ruan Y, Ma B, Cai C, Cai L, Gu J, Lu HF, Zhang M (2020b) Kinetic affinity index informs the divisions of nitrate flux in aerobic denitrification. Bioresour Technol 123345:123345. https://doi.org/10.1016/j.biortech.2020.123345

    CAS  Article  Google Scholar 

  28. Song ZF, An J, Fu GH, Yang XL (2011) Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture 319(1–2):188–193. https://doi.org/10.1016/j.aquaculture.2011.06.018

    CAS  Article  Google Scholar 

  29. Sun Y, Li A, Zhang X, Ma F (2015) Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Appl Microbiol Biotechnol 99(7):3243–3248. https://doi.org/10.1007/s00253-014-6221-6

    CAS  Article  Google Scholar 

  30. Uygur A, Karg F (2004) Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzym Microb Technol 34(3–4):313–318. https://doi.org/10.1016/j.enzmictec.2003.11.010

    CAS  Article  Google Scholar 

  31. Van Bussel CGJ, Schroeder JP, Wuertz S, Schulz C (2012) The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima). Aquaculture 326–329:163–167

    Article  Google Scholar 

  32. Vyrides I, Stuckey DC (2009) Adaptation of anaerobic biomass to saline conditions: role of compatible solutes and extracellular polysaccharides. Enzym Microb Technol 44(1):46–51. https://doi.org/10.1016/j.enzmictec.2008.09.008

    CAS  Article  Google Scholar 

  33. Yang L, Wang XH, Cui S, Ren YX, Yu J, Chen N, Xiao Q, Guo LK, Wang RH (2019) Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Bioresour Technol 285:121360. https://doi.org/10.1016/j.biortech.2019.121360

    CAS  Article  Google Scholar 

  34. Zhao B, Cheng DY, Tan P, An Q, Guo JS (2017) Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal. Bioresour Technol 250:564–573. https://doi.org/10.1016/j.biortech.2017.11.038

    CAS  Article  Google Scholar 

  35. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–616. https://doi.org/10.1016/j.ccr.2004.08.030

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their useful comments.

Funding

This research was supported by the National Natural Science Fund of China (No. 31702391), the National Key R&D Program of China (2019YFD0900501), the Study on Engineering Technology of Planning, Construction and Management for Marine Ranching in Guangdong Province (GML2019ZD0402), the Key R&D Program of Guangdong Province (2019B020215001), the Project in Agriculture Department of Zhejiang province (2019SNLF022), and the Science & Technology Program of Liaoning Province (2019JH2/10200007).

Author information

Affiliations

Authors

Contributions

Conceptualization, JR and RH; methodology, HM; data curation, YL, YR; investigation, CW; software, JS; writing—original draft preparation, JR; supervision, YW; writing—review and editing, RH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rui Han.

Ethics declarations

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Gerald Thouand

Supplementary Information

ESM 1

(DOC 359 kb)

ESM 2

(DOC 396 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Ma, H., Liu, Y. et al. Characterization of a novel marine aerobic denitrifier Vibrio spp. AD2 for efficient nitrate reduction without nitrite accumulation. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12673-8

Download citation

Keywords

  • Aerobic denitrification
  • Vibrio spp.
  • AD2
  • Nitrogen removal
  • Response surface methodology
  • Nitrogen balance
  • Denitrification gene