Influence of cities population size on their energy consumption and CO2 emissions: the case of Spain

Abstract

Half of the world population live in the cities. Cities energy consumption, environmental impact, and the opportunities they provide for our planet’s sustainability make them attractive for governmental authorities. Any action taken in the cities has immediate repercussions. For this reason, many statistical data are published every year. This paper makes the best use of these data to calculate cities CO2 emissions and their thermal and electric energy consumption. The methodology applied takes into consideration each city size by number of inhabitants and gets results per inhabitant and household. This will make possible to put into practice the right actions to reduce CO2 emissions and to use alternative energy. This paper also defines an index to facilitate and simplify the analysis of results. This study was applied to the case of Spain to show the methodology here proposed. In fact, this type of study has never been carried out in Spain before. With this purpose, the 145 Spanish cities with more than 50,000 people were considered. Results show that cities with larger populations present higher consumptions per inhabitant and household. The smallest the population of a city is, the less energy the city consumes. However, electric energy consumption remains constant regardless of the population size. With regard to the CO2 emissions, results bring to light that the biggest cities produce the highest emissions. Furthermore, comparing emissions produced by electrical sources to the total emissions, it was concluded that the smallest cities produce the highest electrical emissions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Alam MM, Murad MW, Noman AHM, Ozturk I (2016) Relationships among carbon emissions, economic growth, energy consumption and population growth: testing environmental Kuznets curve hypothesis for Brazil, China, India and Indonesia. Ecol Indic 70:466–479. https://doi.org/10.1016/j.ecolind.2016.06.043

    Article  Google Scholar 

  2. Ali HS, Law SH, Zannah TI (2016) Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO2 emissions in Nigeria. Environ Sci Pollut Res 23:12435–12443. https://doi.org/10.1007/s11356-016-6437-3

  3. Asumadu-Sarkodie S, Owusu PA (2016) CO2 dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013. Environ Sci Pollut Res 23:13508–13520. https://doi.org/10.1007/s11356-016-6511-x

  4. Aydin G (2014) Modeling of energy consumption based on economic and demographic factors: the case of Turkey with projections. Renew Sust Energ Rev 35:382–389. https://doi.org/10.1016/j.rser.2014.04.004

    Article  Google Scholar 

  5. Azadeh A, Asadzadeh SM, Saberi M, Nadimi V, Tajvidi A, Sheikalishahi M (2011) A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behaviour analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE. Appl Energy 88:3850–3859. https://doi.org/10.1016/j.apenergy.2011.04.027

    Article  Google Scholar 

  6. Behrouznia A, Saberi M, Azadeh A, Asadzadeh SM, Pazhoheshfar P (2010) An adaptive network based fuzzy inference system-fuzzy data envelopment analysis for gas consumption forecasting and analysis: the case of South America. International Conference on Intelligent and Advanced Systems 1-6. https://doi.org/10.1109/ICIAS.2010.5716160

  7. Bianco V, Manca O, Nardini S (2013) Linear regression models to forecast electricity consumption in Italy. Energy Sources Part B 8:86–93. https://doi.org/10.1080/15567240903289549

    Article  Google Scholar 

  8. Bianco V, Scarpa F, Tagliafico LA (2014) Analysis and future outlook of natural gas consumption in the Italian residential sector. Energy Conv Manag 87:754–764. https://doi.org/10.1016/j.enconman.2014.07.081

    Article  Google Scholar 

  9. Blázquez L, Boogen N, Filippini M (2013) Residential electricity demand in Spain: new empirical evidence using aggregate data. Energy Econ 36:648–657. https://doi.org/10.1016/j.eneco.2012.11.010

    Article  Google Scholar 

  10. Brizga J, Feng K, Hubacek K (2013) Drivers of CO2 emissions in the former Soviet Union: a country level IPAT analysis from 1990 to 2010. Energy 59:743–753. https://doi.org/10.1016/j.energy.2013.07.045

    Article  Google Scholar 

  11. Cansino JM, Sánchez-Braza A, Rodríguez-Arévalo ML (2015) Driving forces of Spain’s CO2 emissions: a LMDI decomposition approach. Renew Sust Energ Rev 48:749–759. https://doi.org/10.1016/j.rser.2015.04.011

    CAS  Article  Google Scholar 

  12. Cárdenas-Rodríguez M, Dupont-Courtade L, Oueslati W (2016) Air pollution and urban structure linkages: evidence from European cities. Renew Sust Energ Rev 53:1–9. https://doi.org/10.1016/j.rser.2015.07.190

    CAS  Article  Google Scholar 

  13. Chen J, Wang P, Cui L, Huang S, Song M (2018) Decomposition and decoupling analysis of CO2 emissions in OECD. Appl Energy 231:937–950. https://doi.org/10.1016/j.apenergy.2018.09.179

    CAS  Article  Google Scholar 

  14. Comisión Nacional de los Mercados y la Competencia (2017) Informe de supervisión del mercado de gas natural en España. Madrid: Ministerio de Economía, Industria y Competitividad

  15. Committed to local sustainable energy, reducing energy dependence in European cities, Covenant of Mayors, https://www.covenantofmayors.eu/IMG/pdf/CoM_Reducing_Energy_Dependence_for_web.pdf. Accessed 13 June 2019

  16. Covenant of Mayors for Climate & Energy, https://www.covenantofmayors.eu/en/ Accessed 13 May 2019

  17. Department of Economic and Social Affairs (2015) 2014 Demographic yearbook. (Sixty-fourth ed.). New York: United Nations

  18. Department of Economic and Social Affairs (2016) Report of the Inter-Agency and Expert Group on Sustainable - Development Goals Indicators (E/CN.3/2016/2/Rev.1), United Nations, New York

  19. Dong K, Hochman G, Zhang Y, Sun R, Li H, Liao H (2018) CO2 emissions, economic and population growth, and renewable energy: empirical evidence across regions. Procedia Energy Econ 75:180–192. https://doi.org/10.1016/j.eneco.2018.08.017

    Article  Google Scholar 

  20. Eurostat, European Commission https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=urb_cpop1&lang=en Accessed 8 Dec 2018

  21. Eurostat Methodologies and Working Papers (2008) Statistical classification of economic activities in the European Community. Luxembourg

  22. Feng YY, Zhang LX (2012) Scenario analysis of urban energy saving and carbon abatement policies: a case study of Beijing City, China. Procedia Environ Sci 13:632–644. https://doi.org/10.1016/j.proenv.2012.01.055

    CAS  Article  Google Scholar 

  23. Fragkias M, Lobo J, Strumsky D, Seto KC (2013) Does size matter? Scaling of CO2 emissions and US urban areas. PLoS One 8(6):e64727. https://doi.org/10.1371/journal.pone.0064727

    CAS  Article  Google Scholar 

  24. Günay ME (2016) Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90:92–101. https://doi.org/10.1016/j.enpol.2015.12.019

    Article  Google Scholar 

  25. Hekkenberg M, Benders RMJ, Moll HC, Schoot AJM (2009) Indications for a changing electricity demand pattern: the temperature dependence of electricity demand in the Netherlands. Energy Policy 37:1542–1551. https://doi.org/10.1016/j.enpol.2008.12.030

    Article  Google Scholar 

  26. Hor C, Watson SJ, Majithia S (2005) Analyzing the impact of weather variables on monthly electricity demand. IEEE Trans Power Syst 20(4):2078–2085. https://doi.org/10.1109/TPWRS.2005.857397

    Article  Google Scholar 

  27. Instituto Nacional de Estadística, Cifras de población, Ministerio de Asuntos Económicos y Transformación Digital (2018a) http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176951&menu=ultiDatos&idp=1254735572981. Accessed 11 Oct 2018

  28. Instituto Nacional de Estadística, Demografía y población, Ministerio de Asuntos Económicos y Transformación Digital (2018b) http://www.ine.es/ss/Satellite?L=es_ES&c=Page&cid=1254735910183&p=1254735910183&pagename=INE%2FINELayout. Accessed 10 Oct 2018

  29. Kankal M, Akpinar A, Kömürkü MI, Özsahin TS (2011) Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Appl Energy 88:1927–1939. https://doi.org/10.1016/j.apenergy.2010.12.005

    Article  Google Scholar 

  30. Labandeira X, Labeaga JM, Rodríguez M (2004) Microsimulating the effects of household energy price changes in Spain. Nota di Lavoro 161. https://doi.org/10.2139/ssrn.644724

  31. Labandeira X, Labeaga JM, Rodríguez M (2006) A residential energy demand system for Spain. Energy J 27(2):87–111. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol27-No2-6

    Article  Google Scholar 

  32. Li J, Dong X, Shangguan J, Hook M (2011) Forecasting the growth of China’s natural gas consumption. Energy 36:1380–1385. https://doi.org/10.1016/j.energy.2011.01.003

    Article  Google Scholar 

  33. Lin B, Ahmad I (2017) Analysis of energy related carbon dioxide emission and reduction potential in Pakistan. J Clean Prod 143:278–287. https://doi.org/10.1007/jclepro.2016.12.113

    CAS  Article  Google Scholar 

  34. Liu Y, Wu J, Yu D, Ma Q (2018) The relationship between urban form and air pollution depends on seasonality and city size. Environ Sci Pollut Res 25:1554–15567. https://doi.org/10.1007/s11356-018-1743-6

  35. Makido Y, Shobhakar D, Yamagata Y (2012) Relationship between urban form and CO2 emissions: evidence from fifty Japanese cities. Urban Clim 2:55–67. https://doi.org/10.1016/j.uclim.2012.10.006

    Article  Google Scholar 

  36. Martínez-Zarzoso I, Bengochea-Morancho A, Morales-Lage R (2007) The impact of population on CO2 emissions: evidence from European countries. Environ Resour Econ 38:497–512. https://doi.org/10.1007/s10640-007-9096-5

    Article  Google Scholar 

  37. Ministerio de Industria, Energía y Turismo, Ministerio de Fomento (2016) Factores de emisión de CO2 y coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios de España. https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspx Accessed 21 Oct 2018

  38. Pao H, Fu H, Tseng C (2012) Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy 40:400–409. https://doi.org/10.1016/j.energy.2012.01.037

    Article  Google Scholar 

  39. Pérez-García J, Moral-Carcedo J (2016) Analysis and long term forecasting of electricity demand through a decomposition model: a case study for Spain. Energy 97:127–143. https://doi.org/10.1016/j.energy.2015.11.055

    Article  Google Scholar 

  40. Ranjan M, Jain VK (1999) Modelling of electrical energy consumption in Delhi. Energy 24:351–361. https://doi.org/10.1016/s0360-5442(98)00087-5

    Article  Google Scholar 

  41. Sarak H, Satman A (2003) The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study. Energy 28:929–939. https://doi.org/10.1016/s0360-5442(03)00035-5

    Article  Google Scholar 

  42. Secretaría de Estado de la Energía (2018) Estadísticas y balances energéticos. Madrid: Ministerio para la Transición Ecológica

  43. Shahrokni H, Levihn F, Brandt N (2014) Big meter data analysis of the energy efficiency potential in Stockholm’s building stock. Energy Build 78:153–164. https://doi.org/10.1016/j.enbuild.2014.04.017

    Article  Google Scholar 

  44. Sharma AA (2011) Determinants of carbon dioxide emissions: empirical evidence from 69 countries. Appl Energy 88:376–382. https://doi.org/10.1016/j.apenergy.2010.03.022

    CAS  Article  Google Scholar 

  45. Sohag K, Mamum MA, Uddin GS, Ahmed AM (2017) Sectoral output, energy use, and CO2 emission in middle-income countries. Environ Sci Pollut Res 24:9754–9764. https://doi.org/10.1007/s11356-017-8599-z

    CAS  Article  Google Scholar 

  46. Solarin SA, Lean HH (2016) Natural gas consumption, income, urbanization, and CO2 emissions in China and India. Environ Sci Pollut Res 23:18753–18765. https://doi.org/10.1007/s11356-016-7063-9

  47. Szoplik J (2015) Forecasting of natural gas consumption with artificial neural networks. Energy 85:208–220. https://doi.org/10.1016/j.energy.2015.03.084

    Article  Google Scholar 

  48. United Nations Educational, Scientific and Cultural Organization (UNESCO), https://en.unesco.org/sdgs. Accessed 29 June 2019

  49. Urquizo J, Calderón C, James P (2017) Metrics of urban morphology and their impact on energy consumption: a case study in the United Kingdom. Energy Res Soc Sci 32:193–206. https://doi.org/10.1016/j.erss.2017.03.011

    Article  Google Scholar 

  50. Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. Appl Meteorol 40:1413–1421. https://doi.org/10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2

    Article  Google Scholar 

  51. Wadud Z, Dey HS, Kabir MA, Khan SI (2011) Modeling and forecasting natural gas demand in Bangladesh. Energy Policy 39:7372–7380. https://doi.org/10.1016/j.enpol.2011.08.066

    Article  Google Scholar 

  52. Wang Y, Chen L, Kubota J (2016a) The relationship between urbanization, energy use and carbon emissions: evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J Clean Prod 112:1368–1374. https://doi.org/10.1007/jclepro.2015.06.041

    Article  Google Scholar 

  53. Wang Y, Li L, Kubota J, Han R, Zhu X, Lu G (2016b) Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries. Appl Energy 168:375–380. https://doi.org/10.1016/j.apenergy.2016.01.105

    Article  Google Scholar 

  54. Wang Y, Kang Y, Wang J, Xu L (2017) Panel estimation for the impacts of population-related factors on CO2 emissions: a regional analysis in China. Ecol Indic 78:322–330. https://doi.org/10.1016/j.ecolind.2017.03.032

    Article  Google Scholar 

  55. Wang L, Long R, Chen H, Li W, Yang J (2019) A review of studies on urban energy performance evaluation. Environ Sci Pollut Res 26:3243–3261. https://doi.org/10.1007/s11356-018-3915-9

    Article  Google Scholar 

  56. Wangpattarapong K, Maneewan S, Ketjoy N, Rakwichian W (2008) The impacts of climatic and economic factors on residential electricity consumption of Bangkok Metropolis. Energy Build 40:1419–1425. https://doi.org/10.1016/j.enbuil.2008.01.006

    Article  Google Scholar 

  57. Wen L, Shao H (2019) Analysis of influencing factors of the carbon dioxide emissions in China’s commercial department based on the STIRPAT model and ridge regression. Environ Sci Pollut Res 26:27138–27147. https://doi.org/10.1007/s11356-019-05929-x

    CAS  Article  Google Scholar 

  58. Zaman K, Khan MM, Ahmad M, Rustam R (2012) Determinants of electricity consumption function in Pakistan: old wine in a new bottle. Energy Policy 50:623–634. https://doi.org/10.1016/j.enpol.2012.08.003

    Article  Google Scholar 

  59. Zarco-Soto IM, Zarco-Periñán PJ, Sánchez-Durán R (2020) Influence of climate on energy consumption and CO2 emissions: the case of Spain. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08079-7

  60. Zhang Q (2004) Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy Build 36:1217–1225. https://doi.org/10.1016/j.enbuild.2003.08.002

    Article  Google Scholar 

  61. Zhang C, Lin Y (2012) Panel estimation for urbanization, energy consumption and CO2 emissions: a regional analysis in China. Energy Policy 49:488–498. https://doi.org/10.1016/j.enpol.2012.06.048

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the CERVERA research program of the CDTI, the Industrial and Technological Development Centre of Spain, under the research Project HySGrid+ (CER-20191019).

Availability of data and materials

The data that support the findings of this study are available from indicated references.

Author information

Affiliations

Authors

Contributions

Irene M. Zarco-Soto and Pedro J. Zarco-Periñán wrote the manuscript, established the methodology, and conducted the research and analysis. Irene M. Zarco-Soto, Pedro J. Zarco-Periñán, and Rafael Sánchez-Durán contributed to the study conception and design. All authors have contributed to this manuscript, reviewed, and approved the current form of the manuscript to be submitted.

Corresponding author

Correspondence to Pedro J. Zarco-Periñán.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarco-Soto, I.M., Zarco-Periñán, P.J. & Sánchez-Durán, R. Influence of cities population size on their energy consumption and CO2 emissions: the case of Spain. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12624-3

Download citation

Keywords

  • Population size
  • CO2 emissions
  • Energy consumption
  • Cities
  • Buildings
  • Spain