Preparation of Ce0.9Zr0.1O2/SnIn4S8 composite photocatalyst and its degradation of typical antibiotic pollutants

Abstract

Considering the high environmental risk, the remediation of antibiotic pollutants attracted numerous attentions. In this work, a novel photocatalyst, Ce0.9Zr0.1O2/SnIn4S8, was fabricated by in situ precipitation and hydrothermal method and then applied to the degradation of norfloxacin under the irritation of visible light. The SEM, TEM, XRD, XPS, and electrochemical results clearly showed that the n-type heterojunction between Ce0.9Zr0.1O2 and SnIn4S8 was successfully constructed, which greatly reduces the recombination of the photogenic electron and holes, leading to the improvement of photocatalytic performance and stability (recycled over eight times). Besides, the Ce0.9Zr0.1O2/SnIn4S8 composite also exhibited good ability to mineralize norfloxacin. Under the optimal condition (pH 3, 1 g L−1 of 10% Ce0.9Zr0.1O2/SnIn4S8, and 8 mg L−1 of initial norfloxacin concentration), norfloxacin could be fully and rapidly degraded in 60 min, and completely mineralized in 4 h (99.3 ± 1.7%). LC-QTOF-MS results evidently displayed eight intermediates during norfloxacin degradation. In addition, with the attack of the reactive oxygen species (h+, •OH, and •O2), norfloxacin could be effectively decomposed via deoxygenation, hydroxylation, and carboxylation reactions. Notably, compared to photodegradation, the photocatalytic process could completely eliminate the norfloxacin from water because it could avoid the accumulation of toxic byproducts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aggarwal SL, Tilley GP (1955) Determination of crystallinity in polyethylene by X-ray diffractometer. J Polym Sci 18(87):17–26

    CAS  Article  Google Scholar 

  2. Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ 532:112–126

    CAS  Article  Google Scholar 

  3. Anderson JA, Fierro J (1994) Bulk and surface properties of copper-containing oxides of the general formula LaZr1-xCuxO3. J Solid State Chem 108:305–313

    CAS  Article  Google Scholar 

  4. Baek M, Yoon J, Hong J, Suh J (2013) Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor—adsorption and photocatalytic activity. Appl Catal A-Gen 450:222–229

    CAS  Article  Google Scholar 

  5. Carrettin S, Concepción P, Corma A, Nieto JML, Puntes VF (2004) Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew Chem Int Ed Eng 43:2538–2540

    CAS  Article  Google Scholar 

  6. Chen Y, Tian G, Zhou W, Xiao Y, Wang J, Zhang X, Fu H (2017) Enhanced photogenerated carrier separation in CdS quantum dot sensitized ZnFe2O4/ZnIn2S4 nanosheet stereoscopic films for exceptional visible light photocatalytic H2 evolution performance. Nanoscale 9:5912–5921

    CAS  Article  Google Scholar 

  7. Ding C, Tian L, Liu B, Liang Q, Li Z, Xu S, Liu Q, Lu D (2015) Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity. J Alloys Compd 633:300–305

    CAS  Article  Google Scholar 

  8. Ding D, Liu C, Ji Y, Yang Q, Chen L, Jiang C, Cai T (2017) Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway. Chem Eng J 308:330–339

    CAS  Article  Google Scholar 

  9. Fabiańska A, Bia K-Bielińska A, Stepnowski P, Stolte S, Siedlecka EM (2014) Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation. J Hazard Mater 280:579–587

    Article  CAS  Google Scholar 

  10. Fernandes J, Picciochi R, Belo MDC, E Silva TM, Ferreira M, Fonseca I (2004) Capacitance and photoelectrochemical studies for the assessment of anodic oxide films on aluminium. Electrochim Acta 49:4701–4707

    CAS  Article  Google Scholar 

  11. Fornasiero P, Rao GR, Ka Par J, Erario FL, Graziani M (1998) Reduction of NO by CO over Rh/CeO2-ZrO2 catalysts – evidence for a support-promoted catalytic activity. J Catal 175:269–279

    CAS  Article  Google Scholar 

  12. Ge L, Chen J, Wei X, Zhang S, Qiao X, Cai X, Xie Q (2010) Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate effects of main water constituents. Environ Sci Technol 44:2400–2405

    CAS  Article  Google Scholar 

  13. Gou J, Ma Q, Deng X, Cui Y, Zhang H, Cheng X, Li X, Xie M, Cheng Q (2017) Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin. Chem Eng J 308:818–826

    CAS  Article  Google Scholar 

  14. Guo Y, Li J, Gao Z, Zhu X, Liu Y, Wei Z, Zhao W, Sun C (2016) A simple and effective method for fabricating novel p–n heterojunction photocatalyst g-C3N4/Bi4Ti3O12 and its photocatalytic performances. Appl Catal B-Environ 192:57–71

    CAS  Article  Google Scholar 

  15. Guo C, Gao S, Lv J, Hou S, Zhang Y, Xu J (2017a) Assessing the photocatalytic transformation of norfloxacin by BiOBr/iron oxides hybrid photocatalyst: kinetics, intermediates, and influencing factors. Appl Catal B-Environ 205:68–77

    CAS  Article  Google Scholar 

  16. Guo H, Ke T, Gao N, Liu Y, Cheng X (2017b) Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation. Chem Eng J 316:471–480

    CAS  Article  Google Scholar 

  17. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6(9):534–534

    CAS  Article  Google Scholar 

  18. Huang M, Zhou T, Wu X, Mao J (2017) Distinguishing homogeneous–heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4/UV/oxalate) and the interfacial reaction mechanism. Water Res 119:47–56

    CAS  Article  Google Scholar 

  19. Hughes AE, Gorman JD, Patterson P, Carter R (1996) Unusual peak shifts in the core levels of CeO2 films deposited on Si (100). Surf Interface Anal 24:634–640

    CAS  Article  Google Scholar 

  20. Ingo GM, Paparazzo E, Bagnarelli O, Zacchetti N (1990) XPS studies on cerium, zirconium and yttrium valence states in plasma-sprayed coatings. Surf Interface Anal 16:515–519

    CAS  Article  Google Scholar 

  21. Li Y, Gang C, Wang Q, Xu W, Zhou A, Shen Z (2010) Hierarchical ZnS-In2S3-CuS nanospheres with nanoporous structure: facile synthesis, growth mechanism, and excellent photocatalytic activity. Adv Funct Mater 20:3390–3398

    CAS  Article  Google Scholar 

  22. Li Y, Zhang K, Peng S, Lu G, Li S (2012a) Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/ZnIn2S4 under visible light irradiation. J Mol Catal A-Chem 363:354–361

    Article  CAS  Google Scholar 

  23. Li Y, Zhou X, Chen W, Li L, Zen M, Qin S, Sun S (2012b) Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. J Hazard Mater 227:25–33

    Google Scholar 

  24. Lv Y, Zhang Z, Chen Y, Hu Y (2016) A novel three-stage hybrid nano bimetallic reduction/oxidation/biodegradation treatment for remediation of 2, 2′4, 4′-tetrabromodiphenyl ether. Chem Eng J 289:382–390

    CAS  Article  Google Scholar 

  25. Lv Y, Huang S, Huang G, Liu Y, Yang G, Lin C, Xiao G, Wang Y, Liu M (2020) Remediation of organic arsenic contaminants with heterogeneous Fenton process mediated by SiO2-coated nano zero-valent iron. Environ Sci Pollut R 27:12017–12029

    CAS  Article  Google Scholar 

  26. Ma Y, Chang C, Chiang Y, Sung H, Chao AC (2008) Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. Chemosphere 71:998–1004

    CAS  Article  Google Scholar 

  27. Mamba G, Pulgarin C, Kiwi J, Bensimon M, Rtimi S (2017) Synchronic coupling of Cu2O (p)/CuO (n) semiconductors leading to norfloxacin degradation under visible light: kinetics, mechanism and film surface properties. J Catal 353:133–140

    CAS  Article  Google Scholar 

  28. Mamba G, Kiwi J, Pulgarin C, Sanjines R, Giannakis S, Rtimi S (2018) Evidence for the degradation of an emerging pollutant by a mechanism involving iso-energetic charge transfer under visible light. Appl Catal B-Environ 233:175–183

    CAS  Article  Google Scholar 

  29. Mandal A, Ojha K, De AK, Bhattacharjee S (2004) Removal of catechol from aqueous solution by advanced photo-oxidation process. Chem Eng J 102:203–208

    CAS  Article  Google Scholar 

  30. Min Y, He G, Xu Q, Chen Y (2014) Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J Mater Chem A 2:2578–2584

    CAS  Article  Google Scholar 

  31. Msakuni O, Mareo K, Akio I (1993) The application of CeZr oxide solid solution to oxygen storage promoters in automotive catalysts. J Alloys Compd 193:73–75

    Article  Google Scholar 

  32. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    CAS  Article  Google Scholar 

  33. Pijolat M, Prin M, Soustelle M, Touret O, Nortier P (2011) Thermal stability of doped ceria: experiment and modelling. J Chem Soc Faraday T 91:39–41

    Google Scholar 

  34. Saritha P, Aparna C, Himabindu V, Anjaneyulu Y (2007) Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. J Hazard Mater 149:609–614

    CAS  Article  Google Scholar 

  35. Sayed M, Shah LA, Khan JA, Shah NS, Nisar J, Khan HM, Zhang P, Khan AR (2016) Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed {001} facets. J Phys Chem A 120:9916–9931

    CAS  Article  Google Scholar 

  36. Shi H, Wang C, Zhao Y, Liu E, Fan J, Ji Z (2019) Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite. Appl Catal B-Environ 254:403–413

    CAS  Article  Google Scholar 

  37. Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam T 191:131–153

    CAS  Google Scholar 

  38. Tang L, Wang J, Zeng G, Liu Y, Deng Y, Zhou Y, Tang J, Wang J, Guo Z (2016) Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J Hazard Mater 306:295–304

    CAS  Article  Google Scholar 

  39. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8:569–585

    Article  Google Scholar 

  40. Tian J, Shao Q, Zhao J, Pan D, Dong M, Jia C, Ding T, Wu T, Guo Z (2019) Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J Colloid Interface Sci 541:18–29

    CAS  Article  Google Scholar 

  41. Wang G, Liu S, He T, Liu X, Deng Q, Mao Y, Wang S (2018) Enhanced visible-light-driven photocatalytic activities of Bi2Fe4O9/g-C3N4 composite photocatalysts. Mater Res Bull 104:104–111

    CAS  Article  Google Scholar 

  42. Wen XJ, Niu CG, Huang DW, Zhang L, Liang C, Zeng GM (2017) Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst. J Catal 355:73–86

    CAS  Article  Google Scholar 

  43. Xu L, Wang J (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46:10145–10153

    CAS  Article  Google Scholar 

  44. Xu W, Zhang G, Li X, Zou S, Li J (2007) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 41:4526–4534

    CAS  Article  Google Scholar 

  45. Xu P, Huang S, Liu M, Lv Y, Wang Z, Long J, Zhang W, Fan H (2019) Z-Schemed WO3/rGO/SnIn4S8 sandwich nanohybrids for efficient visible light photocatalytic water purification. Catalysts 9:187–202

    Article  CAS  Google Scholar 

  46. Xue W, Huang D, Li J, Zeng G, Deng R, Yang Y, Chen S, Li Z, Gong X, Li B (2019) Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6 direct dual Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced photocatalytic performance. Chem Eng J 373:1144–1157

    CAS  Article  Google Scholar 

  47. Yan T, Li L, Li G, Wang Y, Hu W, Guan X (2011) Porous SnIn4S8 microspheres in a new polymorph that promotes dyes degradation under visible light irradiation. J Hazard Mater 186:272–279

    CAS  Article  Google Scholar 

  48. Yan J, Wang K, Xu H, Qian J, Liu W, Yang X, Li H (2013) Visible-light photocatalytic efficiencies and anti-photocorrosion behavior of CdS/graphene nanocomposites: evaluation using methylene blue degradation. Chin J Catal 34:1876–1882

    CAS  Article  Google Scholar 

  49. Yuan L, Xie C, Li J, Zou T, Zeng D (2012) New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite. Appl Catal A-Gen 433-434:81–87

    Article  CAS  Google Scholar 

  50. Zhang K, Jing DW, Xing CJ, Guo LJ (2010a) Research on the preparation of (CuAg)xIn2xZn2(1−2x)S2 solid solution photocatalysts. International Symposium on Multiphase Flow Heat Mass Transfer & Energy Conversion 1207:1066–1069

    CAS  Google Scholar 

  51. Zhang Q, Zhang Y, Huang S, Huang X, Luo Y, Meng Q, Li D (2010b) Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochem Commun 12:327–330

    CAS  Article  Google Scholar 

  52. Zhang X, Li R, Jia M, Wang S, Huang Y, Chen C (2015) Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway. Chem Eng J 274:290–297

    CAS  Article  Google Scholar 

  53. Zhou Y, Chen G, Yu Y, Feng Y, Han Z (2014) An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS. Phys Chem Chem Phys 17:1870–1876

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work greatly acknowledges the financial support of the Open Project Program of National Engineering Research Center for Environmental Photocatalysis (grant no. 201904), Fuzhou University.

Funding

Open Project Program of National Engineering Research Center for Environmental Photocatalysis (grant no. 201904), Fuzhou University.

Author information

Affiliations

Authors

Contributions

J.Y. and Y.L. conceived the study, designed the experiments, and wrote the manuscript. J.Y., S.H., K.Z., and G.Y. performed the experiments. Y.L. and C.L. finished the characterization and data analysis. X.Y. analyzed the data and well edited the manuscript. M.L. guided this research.

Corresponding authors

Correspondence to Xiaoxia Ye or Minghua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Sami Rtim

A.Supplementary Information

ESM 1

(DOCX 11749 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Yu, J., Huang, S. et al. Preparation of Ce0.9Zr0.1O2/SnIn4S8 composite photocatalyst and its degradation of typical antibiotic pollutants. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12610-9

Download citation

Keywords

  • Photocatalysis
  • Antibiotics
  • Mineralization
  • Pathway
  • Heterojunction
  • Sulfur-based photocatalysts