UV-irradiation and BDD-based photoelectrolysis for the treatment of halosulfuron-methyl herbicide

Abstract

This paper reports the development of a novel photoelectrochemical (PEC) oxidation technique based on UV-C irradiation and boron-doped diamond (BDD) anode and its application for the effective removal of the commercial herbicide halosulfuron-methyl (HSM). The study evaluated the influence of the following key operating variables in the photoelectrochemical process: current density, pH, temperature, and initial HSM concentration. With regard to HSM degradation/mineralization, the application of high current densities was found to be more advantageous once it promoted a more rapid degradation and mineralization, with 96% of total organic carbon removal, though the process became more energy-demanding over time. The initial concentration of HSM did not modify the relative degradation rate, though the degradation process became more efficient as expected in a mass-transfer controlled process. The use of acidic pH (pH 3) was found to be more suitable than neutral conditions; this is probably because an anionic resonant form of HSM may be formed in neutral conditions. The temperature level was also found to affect the rate of HSM removal and the degradation efficiency. Finally, the substitution of Na2SO4 by NaCl promoted a more rapid and effective degradation; this is attributed to high production of powerful oxidants. However, only 70% mineralization was reached after 3 h of treatment; this is probably related to the formation of recalcitrant chlorinated sub-products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdessemed A, Djebbar KE, El-Kalliny AS et al (2014) Water treatment combined chlorine (monochloramine) degradation using direct photolysis and homogeneous photocatalysis (UV/H2O2, UV/NaOCl) with a medium pressure (MP) lamp as a source of UV. Int J Chem React Eng 12:671–681. https://doi.org/10.1515/ijcre-2014-0013

    CAS  Article  Google Scholar 

  2. Barrera-Díaz C, Cañizares P, Fernández FJ et al (2014) Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. J Mex Chem Soc 58:256–275

    Google Scholar 

  3. Britto-Costa PH, Ruotolo LAM (2012) Phenol removal from wastewaters by electrochemical oxidation using boron doped diamond (BDD) and Ti/Ti0.7Ru0.3O2 dsa® electrodes. Brazilian J Chem Eng 29:763–773. https://doi.org/10.1590/S0104-66322012000400008

    CAS  Article  Google Scholar 

  4. Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal B Environ 62:193–200. https://doi.org/10.1016/j.apcatb.2005.07.011

    CAS  Article  Google Scholar 

  5. Cotillas S, de Vidales MJM, Llanos J et al (2016) Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. J Hazard Mater 319:93–101. https://doi.org/10.1016/j.jhazmat.2016.01.050

    CAS  Article  Google Scholar 

  6. da Silva SW, Heberle ANA, Santos AP et al (2019) Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect. Environ Technol 40:3456–3466. https://doi.org/10.1080/09593330.2018.1478453

    CAS  Article  Google Scholar 

  7. Daniel D, dos Santos VB, Vidal DTR, do Lago CL (2015) Determination of halosulfuron-methyl herbicide in sugarcane juice and tomato by capillary electrophoresis–tandem mass spectrometry. Food Chem 175:82–84. https://doi.org/10.1016/j.foodchem.2014.11.137

    CAS  Article  Google Scholar 

  8. de Araújo BRS, Linares JJ (2018) Electrochemical treatment of cetrimonium chloride with boron-doped diamond anodes. A technical and economical approach. J Environ Manage 214:86–93. https://doi.org/10.1016/j.jenvman.2018.02.094

    CAS  Article  Google Scholar 

  9. de Lourdes Souza F, Sáez C, Cañizares P, de Jesus Motheo A, Andres Rodrigo M (2014) Using a new photo-reactor to promote conductive-diamond electrochemical oxidation of dimethyl phthalate. Journal of Chemical Technology & Biotechnology 89(8):1251–1258

    Article  Google Scholar 

  10. de Vidales MJM, Barba S, Sáez C et al (2014) Coupling ultraviolet light and ultrasound irradiation with conductive-diamond electrochemical oxidation for the removal of progesterone. Electrochim Acta 140:20–26. https://doi.org/10.1016/j.electacta.2014.02.118

    CAS  Article  Google Scholar 

  11. de Vidales MJM, Sáez C, Pérez JF, Cotillas S, Llanos J, Cañizares P, Rodrigo MA (2015) Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. J Appl Electrochem 45:799–808. https://doi.org/10.1007/s10800-015-0825-0

    CAS  Article  Google Scholar 

  12. de Vidales MJM, Cotillas S, Perez-Serrano JF, Llanos J, Saez C, Canizares P, Rodrigo MA (2016) Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environ Sci Pollut Res Int 23(19):19713–19722

    Article  Google Scholar 

  13. Diban N, Urtiaga A (2018) Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes. Environ Sci Pollut Res Int 25(35):34922–34929

    CAS  Article  Google Scholar 

  14. Fatta-Kassinos D, Kalavrouziotis IK, Koukoulakis PH, Vasquez MI (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563. https://doi.org/10.1016/j.scitotenv.2010.03.036

    CAS  Article  Google Scholar 

  15. Fenoll J, Hellín P, Flores P, Martínez CM, Navarro S (2012) Photocatalytic degradation of five sulfonylurea herbicides in aqueous semiconductor suspensions under natural sunlight. Chemosphere. 87:954–961. https://doi.org/10.1016/j.chemosphere.2012.01.056

    CAS  Article  Google Scholar 

  16. Freitas JM, da Oliveira TC, Munoz RAA, Richter EM (2019) Boron doped diamond electrodes in flow-based systems. Front Chem 7:190. https://doi.org/10.3389/fchem.2019.00190

    CAS  Article  Google Scholar 

  17. Ganiyu SO, Brito LRD, de Araújo Costa ECT, dos Santos EV, Martínez-Huitle CA (2019) Solar photovoltaic-battery system as a green energy for driven electrochemical wastewater treatment technologies: application to elimination of Brilliant Blue FCF dye solution. Journal of Environmental Chemical Engineering 7(1):102924

    CAS  Article  Google Scholar 

  18. Ganiyu SO, Martínez-Huitle CA, Rodrigo MA (2020) Renewable energies driven electrochemical wastewater/soil decontamination technologies: a critical review of fundamental concepts and applications. Appl Catal B Environ 270:118857. https://doi.org/10.1016/j.apcatb.2020.118857

    CAS  Article  Google Scholar 

  19. Gil A, Galeano LA, Vicente MÁ (2019) Applications of advanced oxidation processes (AOPs) in drinking water treatment | Antonio Gil | Springer, 1st edn. Springer International Publishing, Cham, Switzerland

  20. Hurwitz G, Hoek EMV, Liu K et al (2014a) Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chem Eng J 249:180–188. https://doi.org/10.1016/j.cej.2014.03.084

    CAS  Article  Google Scholar 

  21. Hurwitz G, Pornwongthong P, Mahendra S, Hoek EMV (2014b) Degradation of phenol by synergistic chlorine-enhanced photo-assisted electrochemical oxidation. Chem Eng J 240:235–243. https://doi.org/10.1016/j.cej.2013.11.087

    CAS  Article  Google Scholar 

  22. Kolthoff IM, Miller IK (1951) The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium 1. J Am Chem Soc 73:3055–3059. https://doi.org/10.1021/ja01151a024

    CAS  Article  Google Scholar 

  23. Lan Y, Coetsier C, Causserand C, Serrano KG (2017) On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta 231:309–318. https://doi.org/10.1016/j.electacta.2017.01.160

    CAS  Article  Google Scholar 

  24. Louhichi B, Ahmadi MF, Bensalah N, Gadri A, Rodrigo MA (2008) Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes. J Hazard Mater 158:430–437. https://doi.org/10.1016/j.jhazmat.2008.01.093

    CAS  Article  Google Scholar 

  25. Martínez-Huitle CA, Andrade LS (2011) Electrocatalysis in wastewater treatment: recent mechanism advances. Quim Nova 34:850–858. https://doi.org/10.1590/S0100-40422011000500021

    Article  Google Scholar 

  26. Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71. https://doi.org/10.1016/j.coelec.2018.07.010

    CAS  Article  Google Scholar 

  27. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

    CAS  Article  Google Scholar 

  28. McBeath ST, Wilkinson DP, Graham NJD (2019) Application of boron-doped diamond electrodes for the anodic oxidation of pesticide micropollutants in a water treatment process: a critical review. In: Environ. Sci.: Water Res. Technol. The Royal Society of Chemistry, pp 2090–2107

  29. Montanaro D, Lavecchia R, Petrucci E, Zuorro A (2017) UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes. Chem Eng J 323:512–519. https://doi.org/10.1016/j.cej.2017.04.129

    CAS  Article  Google Scholar 

  30. Murray B, Dungey S (2017) Opinion proposing harmonised classification and labelling at EU level of halosulfuron-methyl. European Union, Helsinki, Finland

  31. Osgerby IT (2006) ISCO technology overview: do you really understand the chemistry? In: Calabrese EJ, Kostecki PT, Dragun J (eds) Contaminated Soils, Sediments and Water: Successes and Challenges. Springer-Verlag, Boston, MA, pp 287–308

    Google Scholar 

  32. Osugi ME, Umbuzeiro GA, Anderson MA, Zanoni MVB (2005) Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochim Acta 50:5261–5269. https://doi.org/10.1016/j.electacta.2005.01.058

    CAS  Article  Google Scholar 

  33. Panizza M, Michaud PA, Cerisola G, Comninellis CH (2001) Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J Electroanal Chem 507:206–214. https://doi.org/10.1016/S0022-0728(01)00398-9

    CAS  Article  Google Scholar 

  34. Pedlowski MA, Canela MC, da Costa Terra MA, Ramos de Faria RM (2012) Modes of pesticides utilization by Brazilian smallholders and their implications for human health and the environment. Crop Prot 31:113–118. https://doi.org/10.1016/j.cropro.2011.10.002

    Article  Google Scholar 

  35. Rodrigo MA, Oturan N, Oturan MA (2014) Electrochemically assisted remediation of pesticides in soils and water: a review. Chem Rev 114:8720–8745. https://doi.org/10.1021/cr500077e

    CAS  Article  Google Scholar 

  36. Sarigül T, İnam R, Aboul-Enein HY (2010) Electro-oxidation of herbicide halosulfuron methyl on glassy carbon electrode and applications. Talanta 82:1814–1819. https://doi.org/10.1016/j.talanta.2010.07.085

    CAS  Article  Google Scholar 

  37. Souza FL, Sáez C, Cañizares P et al (2014) Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Appl Catal B Environ 144:121–128. https://doi.org/10.1016/j.apcatb.2013.07.003

    CAS  Article  Google Scholar 

  38. Souza FL, Lanza MRV, Llanos J et al (2015a) A wind-powered BDD electrochemical oxidation process for the removal of herbicides. J Environ Manage 158:36–39. https://doi.org/10.1016/j.jenvman.2015.04.040

    CAS  Article  Google Scholar 

  39. Souza FL, Saéz C, Llanos J et al (2015b) Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2,4-D. Chem Eng J 277:64–69. https://doi.org/10.1016/j.cej.2015.04.118

    CAS  Article  Google Scholar 

  40. Souza FL, Saéz C, Lanza MRV et al (2016) Removal of pesticide 2,4-D by conductive-diamond photoelectrochemical oxidation. Appl Catal B Environ 180:733–739. https://doi.org/10.1016/j.apcatb.2015.07.038

    CAS  Article  Google Scholar 

  41. Souza FL, Sáez C, Cañizares P, Rodrigo MA (2020) Improving photolytic treatments with electrochemical technology. Sep Purif Technol 235:116229. https://doi.org/10.1016/j.seppur.2019.116229

    CAS  Article  Google Scholar 

Download references

Data and materials availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Funding

The authors are grateful for the financial support provided by the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF, processes n. 0193-000.714/2016 and n. 0193-000.236/2014), Brazilian National Council for Scientific and Technological Development - CNPq (grants no. 465571/2014-0, 302874/2017-8 and 427452/2018-0), São Paulo Research Foundation – FAPESP (grants #2014/50945-4 and #2017/10118-0), and for the scholarship awarded to Beatriz Rodrigues Pinto (process 23006.001141/2017-41) by the Pro-Rectory of Research at UFABC.

Author information

Affiliations

Authors

Contributions

B. R. Pinto: investigator; data curation; methodology

J. J. Linares: conceptualization; roles/writing-original draft; review and editing

M. R. V. Lanza: validation; review and editing; funding acquisition

F.L. Souza: funding acquisition, supervision, methodology, writing-review and editing, validation

Corresponding author

Correspondence to Fernanda de Lourdes Souza.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Weiming Zhang

Supplementary Information

ESM 1

(DOCX 251 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues Pinto, B., Linares, J.J., de Vasconcelos Lanza, M.R. et al. UV-irradiation and BDD-based photoelectrolysis for the treatment of halosulfuron-methyl herbicide. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12603-8

Download citation

Keywords

  • Boron-doped diamond
  • UV irradiation
  • Operating parameters
  • Halosulfuron-methyl
  • Photoelectrolysis
  • PEC