Heavy metal and organic load in Haripur creek of Gopalpur along the Bay of Bengal, east coast of India

Abstract

Accumulation of heavy metals in zooplanktons is used as an essential tool for the evaluation of health of an ecosystem. Such data are used to set further monitoring strategies especially in (coastal) water bodies. In the present study, seasonal bioaccumulation of heavy metals such as Cu, Zn, Pb, Cd and Hg, organic loads such as nitrite and phosphate, contents loads and physicochemical parameters in Haripur creek along the Bay of Bengal in east coast of India is measured in zooplanktons. Coastal organisms are considered an integral part of marine ecosystems and their frequent massive die-off events along the coast of the Bay of Bengal are correlated with the obtained pollutant data. The levels of heavy metals were also correlated with several extrinsic environmental factors such as water transparency, dissolved oxygen, salinity, pH and temperature. Discriminant function analyses and standardised coefficients for canonical variables for the obtained data indicate that the studied environmental factors and organic loads varied as a function of season. Bioaccumulation of the studied heavy metals in zooplanktons was seasonal and infrequently noticed above the standard limit. The computed bioaccumulation factor of the five metals showed that accumulation of Zn was higher in zooplanktons as compared to that of the other studied metals. So, the entry of heavy metals through the food chains or via direct exposure (to organic loads also) to the other inhabiting organisms including fish may be assumed. This could be one of the possible reasons for the observed frequent (fish) die-off events at Gopalpur Coast along the Bay of Bengal and may be considered a clue for future investigations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

And all data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Al-Imarah FJM, Khalaf TA, Ajeel SG, Khudhair AY, Saad R (2018) Accumulation of heavy metals in zooplanktons from Iraqi National Waters. Int J Mar Sci 8(3):25–34. https://doi.org/10.5376/ijms.2018.08.0003

    Article  Google Scholar 

  2. Bal A, Panda F, Pati SG, Das K, Agrawal PK (2021) Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C. https://doi.org/10.1016/j.cbpc.2020.108971

  3. Bashir FH, Othman MS, Mazlan AG, Rahim SM, Simon KD (2013) Heavy metal concentration in fishes from the coastal waters of Kapar and Mersing, Malaysia. Turk J Fish Aquat Sci 13:375–382

    Article  Google Scholar 

  4. Bendschneider K, Robinson RJ (1952) A new spectrophotometric method for the determination of nitrite in sea water. Technical report (University of Washington. Oceanographic Laboratories), no. 8. University of Washington.

  5. Berry KLE, Seemann J, Dellwig O et al (2013) Sources and spatial distribution of heavy metals in scleractinian coral tissues and sediments from the Bocas del Toro Archipelago, Panama. Environ Monit Assess 185:9089–9099. https://doi.org/10.1007/s10661-013-3238-8

    CAS  Article  Google Scholar 

  6. Bhuyan MS, Bakar MA (2017) Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Environ Sci Pollut Res Int 24(35):27587–27600. https://doi.org/10.1007/s11356-017-0204-y

    CAS  Article  Google Scholar 

  7. Calbet A, Schmoker C, Russo F, Trottet A, Mahjoub MS, Larsen O, Tong HY, Drillet G (2016) Non-proportional bioaccumulation of trace metals and metalloids in the planktonic food web of two Singapore coastal marine inlets with contrasting water residence times. Sci Total Environ 560-561:284–294. https://doi.org/10.1016/j.scitotenv.2016.03.234

    CAS  Article  Google Scholar 

  8. Chainy GB, Paital B, Dandapat J (2016) An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica (Cairo) 2016:6126570. https://doi.org/10.1155/2016/6126570

    CAS  Article  Google Scholar 

  9. Chandran R, Ramamoorthi K (1984) Hydrobiological studies in the gradient zone of the Vellar estuary: II. Nutrients. Mahasagar Bull Nat Inst Ocean 17:133–140

    CAS  Google Scholar 

  10. Choudhury SB (1991) Hydrobiological studies in the coastal waters of Gopalpur: ecology of phytoplankton. Ph.D. thesis, Berhampur University, Orissa, 213 pp.

  11. Choudhury SB, Panigrahy RC (1991) Seasonal distribution and behaviour of nutrients in the creek and coastal waters of Gopalpur, East coast of India. Mahasagar J Oceanogr Limnol 24:81–88

    CAS  Google Scholar 

  12. Ciszewski D, Agnieszka UAK, Szarek-Gwiazda PE, Elżbieta AW, Woźniak W (2013) Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine. Environ Monit Assess 185(12):9825–9842

    CAS  Article  Google Scholar 

  13. Denchak M (2018) Ocean pollution: the dirty facts. https://www.nrdc.org/stories/ocean-pollution-dirty-facts. Accessed 9 Oct 2020

  14. Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P (2016) Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytorem 18(2):134–140. https://doi.org/10.1080/15226514.2015.1058328

    CAS  Article  Google Scholar 

  15. Dobaradaran S, Nabipour I, Ramavandi B, Saeedi R, Spitz J, Izadi A, Abedi E, Janahmadi M (2018) Trace metals in zooplankton from the northern Persian Gulf. Mar Pollut Bull 137:9–11. https://doi.org/10.1016/j.marpolbul.2018.10.007

    CAS  Article  Google Scholar 

  16. Dural M, Göksu MZ, Ozak AA, Derici B (2006) Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the Camlik lagoon of the eastern coast of Mediterranean (Turkey). Environ Monit Assess 118(1-3):65–74

    CAS  Article  Google Scholar 

  17. Einoder LD, MacLeod CK, Coughanowr C (2018) Metal and isotope analysis of bird feathers in a contaminated estuary reveals bioaccumulation, biomagnification, and potential toxic effects. Arch Environ Contam Toxicol 75(1):96–110. https://doi.org/10.1007/s00244-018-0532-z

    CAS  Article  Google Scholar 

  18. EPA (2018) Chapter 5 Water Quality Conditions. https://archive.epa.gov/water/archive/web/html/vms50.html. Accessed 10 Oct 2018

  19. Fang Q, Li T, Chen Z, Lin H, Wang P, Liu F (2019) Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS Appl Mater Interfaces 11(11):10672–10679. https://doi.org/10.1021/acsami.9b00291

    CAS  Article  Google Scholar 

  20. Fawzy MA, Badr NE, El-Khatib A et al (2012) Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess 184:1753–1771. https://doi.org/10.1007/s10661-011-2076-9

    CAS  Article  Google Scholar 

  21. Fernández-Severini MD, Hoffmeyer MS, Marcovecchio JE (2013) Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ Monit Assess 2:1495–1513. https://doi.org/10.1007/s10661-012-3023-0

    CAS  Article  Google Scholar 

  22. Filimonova V, Gonçalves F, Marques JC, De Troch M, Gonçalves AM (2016) Biochemical and toxicological effects of organic (herbicide Primextra(®) Gold TZ) and inorganic (copper) compounds on zooplankton and phytoplankton species. Aquat Toxicol 177:33–43. https://doi.org/10.1016/j.aquatox.2016.05.008

    CAS  Article  Google Scholar 

  23. GESAMP (IMO/FAO/UNESCO/WMO/IAEA/UN/UNEP) (1991) Joint Group of Experts on the scientific Aspects of Marine Pollution, Reducing Environmental impacts of coastal aquaculture. Rep Stud, GESAMP, (Report number 47)

  24. GESAMP (IMO/FAO/UNESCO/WMO/IAEA/UN/UNEP) (2001) Joint Group of Experts on the scientific Aspects of Marine Pollution. Rep Stud, GESAMP, (Report number 70)

  25. GESAMP (IMO/FAO/UNESCO/WMO/IAEA/UN/UNEP) (2009) Joint Group of Experts on the scientific Aspects of Marine Pollution, Pollution in the open oceans: a review of assessments and related studies, 2009. Rep Stud, GESAMP, (Report number 79)

  26. Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M (2019) Twenty years of the ‘preparation for oxidative stress’ (POS) theory: ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 234:36–49. https://doi.org/10.1016/j.cbpa.2019.04.004

    CAS  Article  Google Scholar 

  27. Gouda R (1992) An environmental inventory of the Rushikulya estuary, east coast of India, Ph.D. Thesis, Berhampur University, Orissa, 285 pp.

  28. Gouda R, Panigrahy RC (1993) Monthly variation of some hydrographic parameters in the Rushikulya estuary, east coast of India. Mahasagar J Oceanogr Limnol 26:73–85

    Google Scholar 

  29. Gouda R, Panigrahy RC (1995) Distribution of mercury in a tropical estuary, east coast of India. Pakisthan J Mar Sci 4(2):95–105

    Google Scholar 

  30. Gu YG, Ning JJ, Ke CL, Huang HH (2018) Bioaccessibility and human health implications of heavy metals in different trophic level marine organisms: a case study of the South China Sea. Ecotoxicol Environ Saf 163:551–557. https://doi.org/10.1016/j.ecoenv.2018.07.114

    CAS  Article  Google Scholar 

  31. Gupta GS, Dhawan A, Shanker R (2016) Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio rerio) eleutheroembryo. Chemosphere 163:242–251. https://doi.org/10.1016/j.chemosphere.2016.08.032

    CAS  Article  Google Scholar 

  32. Hao Z, Chen L, Wang C, Zou X, Zheng F, Feng W, Zhang D, Peng L (2019) Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere 226:340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132

    CAS  Article  Google Scholar 

  33. Hardikar R, Haridevi CK, Ram A, Khandeparker R, Amberkar U, Chauhan M (2019) Inter-annual variability of phytoplankton assemblage and Tetraspora gelatinosa bloom from anthropogenically affected harbour, Veraval, India. Environ Monit Assess 191(2):87. https://doi.org/10.1007/s10661-019-7192-y

    CAS  Article  Google Scholar 

  34. Harvey HW (1950) On the production of living matter in the sea. J Mar Biol Assoc, UK 29:97–136

    CAS  Article  Google Scholar 

  35. Holland DM, Nicholls KW, Basinski A (2020) The southern ocean and its interaction with the Antarctic ice sheet. Science 367(6484):1326–1330. https://doi.org/10.1126/science.aaz5491

    CAS  Article  Google Scholar 

  36. Ju YR, Lo WT, Chen CF, Chen CW, Huang ZL, Dong CD (2019) Effect of metals on zooplankton abundance and distribution in the coast of southwestern Taiwan. Environ Sci Pollut Res Int 26(33):33722–33731. https://doi.org/10.1007/s11356-018-2169-x

    CAS  Article  Google Scholar 

  37. Khan MI, Zahoor M, Khan A, Gulfam N, Khisroon M (2019) Bioaccumulation of heavy metals and their genotoxic effect on freshwater mussel. Bull Environ Contam Toxicol 102(1):52–58. https://doi.org/10.1007/s00128-018-2492-4

    CAS  Article  Google Scholar 

  38. Liu J, Cao L, Dou S (2019) Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Sci Total Environ 670:508–522. https://doi.org/10.1016/j.scitotenv.2019.03.140

    CAS  Article  Google Scholar 

  39. Lueder U, Jørgensen BB, Kappler A, Schmidt C (2020) Photochemistry of iron in aquatic environments. Environ Sci Process Impacts 22(1):12–24. https://doi.org/10.1039/c9em00415g

    CAS  Article  Google Scholar 

  40. Mishra S, Panigrahy RC (1995) Occurrence of diatom blooms in Bahuda estuary, east coast of India. Ind J Mar Sci 24:99–101

    Google Scholar 

  41. Morcillo P, Cordero H, Meseguer J, Esteban MAÁ, Cuesta A (2015) Toxicological in vitro effects of heavy metals on gilthead seabream (Sparus aurata L.) head-kidney leucocytes. Toxicol Vitro 30(1 Pt B):412–420. https://doi.org/10.1016/j.tiv.2015.09.021

    CAS  Article  Google Scholar 

  42. Morcillo P, Romero D, Meseguer J, Esteban MÁ, Cuesta A (2016) Cytotoxicity and alterations at transcriptional level caused by metals on fish erythrocytes in vitro. Environ Sci Pollut Res Int 12(123):12–22. https://doi.org/10.1007/s11356-016-6445-3

    CAS  Article  Google Scholar 

  43. Morris AW, Riley JP (1963) The determination of nitrate in sea water. Anal Chim Acta 29:272–279. https://doi.org/10.1016/S0003-2670(00)88614-6

    CAS  Article  Google Scholar 

  44. Morselli L, Brusoria B, Passarini F, Bernardi E, Francaviglia R, Gataletab L, Marchionnib M, Aromolob R, Benedetti A, Olivieri P (2003) Heavy metals monitoring at a Mediterranean natural ecosystem of central Italy. Trends in different environmental matrixes. Environ Int 30:173–181

    Article  Google Scholar 

  45. Naik S, Acharya BC, Mohapatra A (2009) Seasonal variations of phytoplankton in Mahanadi estuary, east coast of India. Ind J Mar Sci 38(2):184–190

    CAS  Google Scholar 

  46. Nedrich SM, Burton GA Jr (2017) Sediment Zn-release during post-drought re-flooding: assessing environmental risk to Hyalella azteca and Daphnia magna. Environ Pollut 230:1116–1124. https://doi.org/10.1016/j.envpol.2017.07.073

    CAS  Article  Google Scholar 

  47. Paital B (2016) RE: 2016. Full speed ahead to the city on the hill. Science 352(6288):1–2. https://science.sciencemag.org/content/352/6288/886.e-letters. Accessed 10 Oct 2020

  48. Paital B (2018a) Nutraceutical values of fish demand their ecological genetic studies: a short review. J Basic Appl Zool 79(16):1–11

    Google Scholar 

  49. Paital B (2018b) Removing small non-enzymatic molecules for biochemical assay of redox regulatory enzymes; an exemplary comments on “Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure”. Ecotoxicol Environ Saf 154:337–340. https://doi.org/10.1016/j.ecoenv.2018.01.051

    Article  Google Scholar 

  50. Paital B, Chainy GBN (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C 151:142–151

    Google Scholar 

  51. Paital B, Chainy GBN (2012) Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comp Biochem Physiol C 155:228–237

    CAS  Google Scholar 

  52. Paital B, Chainy GBN (2013a) Modulation of expression of SOD isoenzymes in mud crab (Scylla serrata): effects of inhibitors, salinity and season. J Enzyme Inhib Med Chem 28(1):195–204. https://doi.org/10.3109/14756366.2011.645239

    CAS  Article  Google Scholar 

  53. Paital B, Chainy GBN (2013b) Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicol Environ Saf 87:33–41

    CAS  Article  Google Scholar 

  54. Paital B, Chainy GBN (2014) Effects of temperature on complex I and II mediated mitochondrial respiration, ROS generation and oxidative stress status in gills of the mud crab Scylla serrata. J Therm Biol 41:104–111

    CAS  Article  Google Scholar 

  55. Paital B, Rivera-Ingraham GA (2016) High speed urbanization and its effects on aquatic food chain especially on fish in Bata River of Odisha, India. J Fish Sci.com 10(4):1–3

    Google Scholar 

  56. Paital B, Das S, Dutta SK (2015) Biochemical and environmental insights of declining vulture population in some Asian countries. Curr Trends Biotechnol Pharmacol 9(4):389–410

    Google Scholar 

  57. Paital B, Panda SK, Hati AK, Mohanty B, Mohapatra MK, Kanungo S, Chainy GB (2016) Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J Biol Chem 7(1):110–127. https://doi.org/10.4331/wjbc.v7.i1.110

    Article  Google Scholar 

  58. Paital B, Bal A, Rivera-Ingraham GA, Lignot JH (2018) Increasing frequency of large-scale die-off events in the Bay of Bengal: reasoning, perceptive and future approaches. Ind J Geo-Mar Sci 47(11):2135–2146

    Google Scholar 

  59. Paital B, Guru D, Mohapatra P, Panda B, Parida N, Rath S, Kumar V, Saxena PS, Srivastava A (2019) Ecotoxic impact assessment of graphene oxide on lipid peroxidation at mitochondrial level and redox modulation in fresh water fish Anabas testudineus. Chemosphere 224:796–804. https://doi.org/10.1016/j.chemosphere.2019.02.156

    CAS  Article  Google Scholar 

  60. Panigrahy RC, Gouda R (1990) Occurrence of bloom of the diatom Asterionella glacialis (Castracane) in the Rushikulya Estuary, East Coast of India. Mahasagar 23(2):179–182

    CAS  Google Scholar 

  61. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 173

    Google Scholar 

  62. Patnaik KC, Misra PM (1990) Seasonal variation in the physico-chemical properties of Rushikulya Estuary and its effect on the occurrence of chanos fry. J Ind Fish Assoc 20:69–71

    Google Scholar 

  63. Pempkowiak J, Walkusz-Miotk J, Bełdowski J, Walkusz W (2006) Heavy metals in zooplankton from the Southern Baltic. Chemosphere 62(10):1697–1708. https://doi.org/10.1016/j.chemosphere.2005.06.056

    CAS  Article  Google Scholar 

  64. Perugini M, Maurizio PV, Annalisa M, Vincenzo Z, Amorena OM (2014) Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ Monit Assess 186(4):2205–2213

    CAS  Article  Google Scholar 

  65. Perumal NV, Rajkumar M, Perumal P, Rajasekar KT (2009) Seasonal variations of plankton diversity in the Kaduviyar estuary, Nagapattinam, southeast coast of India. J Environ Biol 30(6):1035–1046

    Google Scholar 

  66. Prabu V, Rajkumar MA, Perumal P (2008) Seasonal variations in physico-chemical characteristics of Pichavaram mangroves, southeast coast of India. J Environ Biol 29(6):945–950

    Google Scholar 

  67. Qasim SZ, Sengupta R (1980) Present status of marine pollution in India. In: Patel B (ed) In: Management of environment. Wiley Eastern Ltd., New Delhi, pp 310–329

    Google Scholar 

  68. Qasim SZ, Shaw SW, Bhattathiri PMA, Abidi SAH (1969) Organic production in a tropical estuary. Proc Ind Sci Sec B 59:51–94

    Google Scholar 

  69. Qasim SZ, Gupta RS, Kureishy TW (1988) Pollution of the seas around India. Proc Indian Acad Sci Anim Sci 97:117–131

    CAS  Article  Google Scholar 

  70. Radwan S, Kowalik W, Kowalczyk C (1990) Occurrence of heavy metals in water, phytoplankton and zooplankton of a mesotrophic lake in eastern Poland. Sci Total Environ 96(1–2):115–120. https://doi.org/10.1016/0048-9697(90)90011-I

    CAS  Article  Google Scholar 

  71. Rajkumar JSI, Milton JMC, Ambrose T (2011) Seasonal variation of water quality parameters in Ennore estuary with respect to industrial and domestic sewage. Int J Curr Res 3:209–218

    Google Scholar 

  72. Rauf A, Javed M, Jabeen G (2018) Uptake and accumulation of heavy metals in water and planktonic biomass of the River Ravi, Pakistan. Turk J Fish Aquat Sci 19(10):857–864

    Google Scholar 

  73. Samanta L, Paital B (2016) Effects of seasonal variation on oxidative stress physiology in natural population of toad Bufo melanostictus; clues for analysis of environmental pollution. Environ Sci Pollut Res 23(22):22819–22831

    CAS  Article  Google Scholar 

  74. Sayg Y, Yiğit SA (2012) Assessment of metal concentrations in two cyprinid fish species (Leuciscus cephalus and Tinca tinca) captured from Yeniçağa Lake. Turkey Bull Environ Contam Toxicol 89(1):86–90. https://doi.org/10.1007/s00128-012-0647-2

    CAS  Article  Google Scholar 

  75. Schmidt K, Schlosser C, Atkinson A, Fielding S, Venables HJ, Waluda CM, Achterberg EP (2016) Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. Curr Biol 26(19):2667–2673. https://doi.org/10.1016/j.cub.2016.07.058

    CAS  Article  Google Scholar 

  76. Senthilkumar B, Purvaja R, Ramesh R (2008) Seasonal and tidal dynamics of nutrients and chlorophyll a in a tropical mangrove estuary, southeast coast of India. Indian J Mar Sci 37:132–140

    CAS  Google Scholar 

  77. Sharp JH, Culberson CH, Church TM (1982) The chemistry of the Delaware estuary, General considerations. Limnol Oceanogr 27:1015–1028

    CAS  Article  Google Scholar 

  78. Signa G, Mazzola A, Tramati CD, Vizzini S (2017) Diet and habitat use influence Hg and Cd transfer to fish and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea). Environ Pollut 230:394–404. https://doi.org/10.1016/j.envpol.2017.06.027

    CAS  Article  Google Scholar 

  79. Srichandan S, Sahu BK, Panda R, Baliarsingh SK, Sahu KC, Panigrahy RC (2015) Zooplankton distribution in coastal water of the north-western Bay of Bengal, off Rushikulya Estuary, east coast of India. Ind J Geo-Mar Sci 44(4):519–527

    Google Scholar 

  80. Tabari S, Saravi SS, Bandany GA, Dehghan A, Shokrzadeh M (2010) Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea. Iran Toxico lnd Health 26(10):649–656. https://doi.org/10.1177/0748233710377777

    CAS  Article  Google Scholar 

  81. Velusamy A, Kumar PS, Ram A, Chinnadurai S (2014) Bioaccumulation of heavy metals in commercially important marine fishes from Mumbai Harbor, India. Mar Pollut Bull 81(1):218–224

    CAS  Article  Google Scholar 

  82. Verlencar XN (1987) Distribution of nutrients in the coastal and estuarine waters of Goa. Mahasagar Bull Nat Inst Oceanogr 20(4):205–215

    CAS  Google Scholar 

  83. Woodland RJ, Thomson JR, MacNally R, Reich P, Evrard V, Wary FY, Walker JP, PLM C (2015) Nitrogen loads explain primary productivity in estuaries at the ecosystem scale. Limnol Oceanogr 60:1751–1762

    Article  Google Scholar 

  84. Yang S, Li X, Wu C, He X, Zhong Y (2017) Application of the PJ and NPS evaporation duct models over the South China Sea (SCS) in winter. PLoS One 12(3):e0172284. https://doi.org/10.1371/journal.pone.0172284

    CAS  Article  Google Scholar 

  85. Young ED, Shahar A, Nimmo F, Schlichting HE, Schauble EA, Tang H, Labidi J (2019) Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323:1–15. https://doi.org/10.1016/j.icarus.2019.01.012

    CAS  Article  Google Scholar 

  86. Zhuang W, Gao X (2014) Assessment of heavy metal impact on sediment quality of the Xiaoqinghe estuary in the coastal Laizhou Bay, Bohai Sea: inconsistency between two commonly used criteria. Mar Pollut Bull 83:352–357

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Generous help rendered by the Prof. Rama Chandra Panigrahy is highly acknowledged.

Funding

Scheme No. ECR/2016/001984 by SERB, DST, Govt. of India, and 1188/ST, Bhubaneswar, dated 01.03.17, ST-(Bio)-02/2017 by Department of Biotechnology, DST, Government of Odisha, India, to BRP.

Author information

Affiliations

Authors

Contributions

SR analysed the data, did statistics and interpreted the data regarding the environmental parameters and wrote the MS. AB analysed the data, did DFA analyses, wrote the MS and was a major contributor in writing the manuscript. BRP has conceptual contribution for the study, has analysed the data, wrote the MS and proof read the MS.

Corresponding author

Correspondence to Biswaranjan Paital.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: V. V.S.S. Sarma

Supplementary information

ESM 1

(DOCX 841 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rath, S., Bal, A. & Paital, B. Heavy metal and organic load in Haripur creek of Gopalpur along the Bay of Bengal, east coast of India. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12601-w

Download citation

Keywords

  • Phytoplankton
  • Bay of Bengal
  • Bioaccumulation
  • Environmental monitoring
  • Heavy metals
  • Organic load
  • Frequent die-off event