Exploring the impact of transition in energy mix on the CO2 emissions from China’s power generation sector based on IDA and SDA

Abstract

The energy transition from coal and oil to renewable energy, nuclear energy, and natural gas is a fundamental way for emission reduction of China’s power generation sector. Until now, research on the drivers of CO2 emissions from China’s power generation sector has generally evaluated the energy mix as a whole, with a lack of exploration of the decomposition of different types of energy. This paper uses both index decomposition analysis (IDA) and structural decomposition analysis (SDA) to explore the impacts of energy transition on CO2 emissions in the power generation sector during periods of 2002–2007, 2007–2012, and 2012–2017. We find that the results of IDA and SDA are almost consistent, indicating that our results are robust. During the whole study period, CO2 emissions of power generation sector increased by 2447 Mt, of which the fossil fuel structure significantly contributed 642 Mt of incremental emissions (IDA). The thermal power generation efficiency was a dominator for reducing emissions, with a total reduction of 586 Mt (IDA). Simultaneously, the impacts of renewable energy and nuclear energy on emission reduction tend to be strengthening over time, with values changing from 38 Mt and −5 Mt in 2002-2007 to −219 Mt and −83 Mt (IDA) in 2012-2017, respectively. Based on the results, we put forward some suggestions such as promoting coal-to-gas, renewable energy, and nuclear energy in power generation to cut down CO2 emissions of China’s power generation sector.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated and analyzed during the current study are available in the National Bureau of Statistics of China, China Energy Statistics Yearbook, and China Electricity Statistical Yearbook http://www.stats.gov.cn/tjsj/ndsj/.

References

  1. Ang BW (2004) Decomposition analysis for policymaking in energy. Energy Policy 32:1131–1139. https://doi.org/10.1016/s0301-4215(03)00076-4

    Article  Google Scholar 

  2. Ang BW (2015) LMDI decomposition approach: a guide for implementation. Energy Policy 86:233–238. https://doi.org/10.1016/j.enpol.2015.07.007

    Article  Google Scholar 

  3. Ang BW, Choi K-H (1997) Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy J 18:59–74. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol18-No3-3

    Article  Google Scholar 

  4. Ang BW, Zhang FQ, Choi K-H (1998) Factorizing changes in energy and environmental indicators through decomposition. Energy 23:489–495. https://doi.org/10.1016/S0360-5442(98)00016-4

    Article  Google Scholar 

  5. Bloomberg New Energy Finance (2019) New Energy Outlook. https://about.bnef.com/new-energy-outlook/. Accessed 8 July 2019

  6. Butnar I, Llop M (2011) Structural decomposition analysis and input–output subsystems: changes in CO2 emissions of Spanish service sectors (2000–2005). Ecol Econ 70:2012–2019. https://doi.org/10.1016/j.ecolecon.2011.05.017

    Article  Google Scholar 

  7. Chen Y, Zhao J, Lai Z, Wang Z, Xia H (2019) Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: evidence from a regional panel analysis. Renew Energy 140:341–353. https://doi.org/10.1016/j.renene.2019.03.058

    Article  Google Scholar 

  8. Chen G, Hou F, Li J, Chang K (2020) Decoupling analysis between carbon dioxide emissions and the corresponding driving forces by Chinese power industry. Environ Sci Pollut Res 28:2369–2378. https://doi.org/10.1007/s11356-020-10666-7

    CAS  Article  Google Scholar 

  9. China Electric Power Yearbook Editorial Board (2003-2018) China Electric Power Yearbook 2002-2017. China Electric Power Press, Beijing. https://data.cnki.net/yearbook/Single/N2019060101. Accessed 15 June 2019

  10. Chinese Input-Output Association (2017) Chinese input-output table of 42 sector. http://www.stats.gov.cn/ztjc/tjzdgg/trccxh/zlxz/trccb/. Accessed 8 July 2019

  11. Chong CH, Tan WX, Ting ZJ, Liu P, Ma L, Li Z, Ni W (2019) The driving factors of energy-related CO2 emission growth in Malaysia: the LMDI decomposition method based on energy allocation analysis. Renew Sust Energ Rev 115:109356. https://doi.org/10.1016/j.rser.2019.109356

    CAS  Article  Google Scholar 

  12. Cui G, Yu Y, Zhou L, Zhang H (2020) Driving forces for carbon emissions changes in Beijing and the role of green power. Sci Total Environ 728:138688. https://doi.org/10.1016/j.scitotenv.2020.138688

    CAS  Article  Google Scholar 

  13. Dai L, Wang M (2020) Study on the influence of carbon emission constraints on the performance of thermal power enterprises. Environ Sci Pollut Res 27:30875–30884. https://doi.org/10.1007/s11356-020-09604-4

    CAS  Article  Google Scholar 

  14. De Oliveira-De Jesus PM (2019) Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis. Renew Sust Energ Rev 101:516–526. https://doi.org/10.1016/j.rser.2018.11.030

    Article  Google Scholar 

  15. De Oliveira-De Jesus PM, Galvis JJ, Rojas-Lozano D, Yusta JM (2020) Multitemporal LMDI index decomposition analysis to explain the changes of aci by the power sector in Latin America and the Caribbean between 1990–2017. Energies 13:2328. https://doi.org/10.3390/en13092328

    CAS  Article  Google Scholar 

  16. Deng M, Li W, Hu Y (2016) Decomposing industrial energy-related CO2 emissions in Yunnan Province, China: switching to low-carbon economic growth. Energies 9:23. https://doi.org/10.3390/en9010023

    Article  Google Scholar 

  17. Dietzenbacher E, Los B (1998) Structural decomposition techniques: sense and sensitivity. Econ Syst Res 10:307–324. https://doi.org/10.1080/09535319800000023

    Article  Google Scholar 

  18. Dietzenbacher E, Los B (2000) Structural decomposition analyses with dependent determinants. Econ Syst Res 12:497–514. https://doi.org/10.1080/09535310020003793

    Article  Google Scholar 

  19. Feng C, Zheng C-J, Shan M-L (2020) The clarification for the features, temporal variations, and potential factors of global carbon dioxide emissions. J Clean Prod 255:120250. https://doi.org/10.1016/j.jclepro.2020.120250

    Article  Google Scholar 

  20. Goh T, Ang BW, Su B, Wang H (2018) Drivers of stagnating global carbon intensity of electricity and the way forward. Energy Policy 113:149–156. https://doi.org/10.1016/j.enpol.2017.10.058

    Article  Google Scholar 

  21. Hastuti SH, Hartono D, Putranti TM, Imansyah MH (2020) The drivers of energy-related CO2 emission changes in Indonesia: structural decomposition analysis. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-020-11414-7

  22. Hoekstra R, van den Bergh JCJM (2003) Comparing structural decomposition analysis and index. Energy Econ 25:39–64. https://doi.org/10.1016/S0140-9883(02)00059-2

    Article  Google Scholar 

  23. Huang J-B, Luo Y-M, Feng C (2019) An overview of carbon dioxide emissions from China’s ferrous metal industry: 1991-2030. Resources Pol 62:541–549. https://doi.org/10.1016/j.resourpol.2018.10.010

    Article  Google Scholar 

  24. IEA (2002-2017) Generation of various energy sources in China. International Energy Agency, Paris. https://www.iea.org. Accessed 25 June 2019

  25. IPCC (2006) 2006 IPCC Guidelines for national greenhouse gas inventories. intergovernmental panel on climate change. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html. Accessed 6 June 2019

  26. IPCC (2018) Global warming of 1.5 °C: special report on the impacts of global warming of 1.5 °C. Intergovernmental Panel on Climate Change, Switzerland. https://www.ipcc.ch/sr15/. Accessed 6 June 2019

  27. Jiang T, Yang J, Huang S (2020) Evolution and driving factors of CO2 emissions structure in China’s heating and power industries: the supply-side and demand-side dual perspectives. J Clean Prod 264:121507. https://doi.org/10.1016/j.jclepro.2020.121507

    CAS  Article  Google Scholar 

  28. Kim H, Kim M, Kim H, Park S (2020) Decomposition analysis of CO2 emission from electricity generation: comparison of OECD countries before and after the financial crisis. Energies 13:3522. https://doi.org/10.3390/en13143522

    CAS  Article  Google Scholar 

  29. Kung C-C, McCarl BA (2020) The potential role of renewable electricity generation in Taiwan. Energy Policy 138:111227. https://doi.org/10.1016/j.enpol.2019.111227

    Article  Google Scholar 

  30. Li X, Liao H, Du Y-F, Wang C, Wang J-W, Liu Y (2018) Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis. Environ Sci Pollut Res 25:6814–6825. https://doi.org/10.1007/s11356-017-1013-z

    CAS  Article  Google Scholar 

  31. Li J, Li S, Wu F (2020) Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renew Energy 155:456–468. https://doi.org/10.1016/j.renene.2020.03.133

    CAS  Article  Google Scholar 

  32. Liao C, Wang S, Zhang Y, Song D, Zhang C (2019) Driving forces and clustering analysis of provincial-level CO2 emissions from the power sector in China from 2005 to 2015. J Clean Prod 240:118026. https://doi.org/10.1016/j.jclepro.2019.118026

    CAS  Article  Google Scholar 

  33. Lin B, Li Z (2020) Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model. Energy Policy 137:111121. https://doi.org/10.1016/j.enpol.2019.111121

    CAS  Article  Google Scholar 

  34. Lindner S, Legault J, Guan D (2013) Disaggregating the electricity sector of China’s input–output table for improved environmental life-cycle assessment. Econ Syst Res 25:300–320. https://doi.org/10.1080/09535314.2012.746646

    Article  Google Scholar 

  35. Liu Y, Feng C (2020) Decouple transport CO2 emissions from China’s economic expansion: a temporal-spatial analysis. Transp Res Part D: Transp Environ 79:102225. https://doi.org/10.1016/j.trd.2020.102225

    Article  Google Scholar 

  36. Liu Y, Wang M, Feng C (2020) Inequalities of China’s regional low-carbon development. J Environ Manag 274:111042. https://doi.org/10.1016/j.jenvman.2020.111042

    Article  Google Scholar 

  37. Luo F, Guo Y, Yao M, Cai W, Wang M, Wei W (2020) Carbon emissions and driving forces of China’s power sector: input-output model based on the disaggregated power sector. J Clean Prod 268:121925. https://doi.org/10.1016/j.jclepro.2020.121925

    Article  Google Scholar 

  38. Lykidi M, Gourdel P (2017) Optimal management of flexible nuclear power plants in a decarbonising competitive electricity market: The French case. Energy 132:171–185. https://doi.org/10.1016/j.energy.2017.05.065

    Article  Google Scholar 

  39. Ma J-J, Du G, Xie B-C (2019) CO2 emission changes of China’s power generation system: input-output subsystem analysis. Energy Policy 124:1–12. https://doi.org/10.1016/j.enpol.2018.09.030

    Article  Google Scholar 

  40. Mai L, Ran Q, Wu H (2020) A LMDI decomposition analysis of carbon dioxide emissions from the electric power sector in Northwest China. Nat Res Model 33:e12284. https://doi.org/10.1111/nrm.12284

    Article  Google Scholar 

  41. Mi Z, Meng J, Guan D, Shan Y, Song M, Wei YM, Liu Z, Hubacek K (2017) Chinese CO2 emission flows have reversed since the global financial crisis. Nat Commun 8:1712. https://doi.org/10.1038/s41467-017-01820-w

    CAS  Article  Google Scholar 

  42. Mohlin K, Camuzeaux JR, Muller A, Schneider M, Wagner G (2018) Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis. Energy Policy 116:290–296. https://doi.org/10.1016/j.enpol.2018.02.006

    CAS  Article  Google Scholar 

  43. National Bureau of Statistics of China (NBS) (2003a-2018a) China Energy Statistical Yearbook 2002-2017. China Statistics Press, Beijing. https://data.cnki.net/area/Yearbook/Single/N2008070077?z=D20. Accessed 7 June 2019

  44. National Bureau of Statistics of China (NBS) (2003b-2018b) China Statistics Yearbook 2002-2017. China Statistics Press, Beijing. http://www.stats.gov.cn/tjsj/ndsj/ Accessed 7 June 2019

  45. National Bureau of Statistics of China (NBS) (2020) Input-output table of the People’s Republic of China. China Statistics Press, Beijing. https://data.stats.gov.cn/ifnormal.htm?u=/files/html/quickSearch/trcc/trcc01.html&h=740. Accessed 8 June 2020

  46. Nguyen KH, Kakinaka M (2019) Renewable energy consumption, carbon emissions, and development stages: some evidence from panel cointegration analysis. Renew Energy 132:1049–1057. https://doi.org/10.1016/j.renene.2018.08.069

    Article  Google Scholar 

  47. Ozcan M (2019) Factors influencing the electricity generation preferences of Turkish citizens: citizens’ attitudes and policy recommendations in the context of climate change and environmental impact. Renew Energy 132:381–393. https://doi.org/10.1016/j.renene.2018.08.006

    Article  Google Scholar 

  48. Peng X, Tao X, Feng K, Hubacek K (2020) Drivers toward a low-carbon electricity system in China’s provinces. Environ Sci Technol 54:5774–5782. https://doi.org/10.1021/acs.est.0c00536

    CAS  Article  Google Scholar 

  49. Rauner S, Bauer N, Dirnaichner A, Dingenen RV, Mutel C, Luderer G (2020) Coal-exit health and environmental damage reductions outweigh economic impacts. Nat Clim Chang 10:308–312. https://doi.org/10.1038/s41558-020-0728-x

    Article  Google Scholar 

  50. Raza MY, Lin B (2020) Decoupling and mitigation potential analysis of CO2 emissions from Pakistan’s transport sector. Sci Total Environ 730:139000. https://doi.org/10.1016/j.scitotenv.2020.139000

    CAS  Article  Google Scholar 

  51. Roelfsema M, van Soest H, Drouet L, Emmerling JA, Reis L (2020) Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat Commun 11:2096. https://doi.org/10.1038/s41467-020-15414-6

    CAS  Article  Google Scholar 

  52. Shan Y, Guan D, Zheng H, Ou J, Li Y, Meng J, Mi Z, Liu Z, Zhang Q (2018) China CO2 emission accounts 1997-2015. Sci Data 5:170201. https://doi.org/10.1038/sdata.2017.201

    CAS  Article  Google Scholar 

  53. Su B, Ang BW (2012) Structural decomposition analysis applied to energy and emissions: some methodological developments. Energy Econ 34:177–188. https://doi.org/10.1016/j.eneco.2011.10.009

    Article  Google Scholar 

  54. Su B, Ang BW (2016) Multi-region comparisons of emission performance: the structural decomposition analysis approach. Ecol Indic 67:78–87. https://doi.org/10.1016/j.ecolind.2016.02.020

    Article  Google Scholar 

  55. Su B, Ang BW, Li Y (2017) Input-output and structural decomposition analysis of Singapore’s carbon emissions. Energy Policy 105:484–492. https://doi.org/10.1016/j.enpol.2017.03.027

    Article  Google Scholar 

  56. Wang M, Feng C (2020) The impacts of technological gap and scale economy on the low-carbon development of China’s industries: an extended decomposition analysis. Technol Forecast Soc Chang 157:120050. https://doi.org/10.1016/j.techfore.2020.120050

    Article  Google Scholar 

  57. Wang Y, Li J (2019) Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China’s provinces. Renew Energy 136:317–330. https://doi.org/10.1016/j.renene.2019.01.012

    Article  Google Scholar 

  58. Wang H, Ang BW, Su B (2017) Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy 107:585–599. https://doi.org/10.1016/j.enpol.2017.05.034

    Article  Google Scholar 

  59. Wang J, Rodrigues JFD, Hu M, Behrens P, Tukker A (2019a) The evolution of Chinese industrial CO2 emissions 2000–2050: a review and meta-analysis of historical drivers, projections and policy goals. Renew Sust Energ Rev 116:109433. https://doi.org/10.1016/j.rser.2019.109433

    CAS  Article  Google Scholar 

  60. Wang Y, Su X, Qi L, Shang P, Xu Y (2019b) Feasibility of peaking carbon emissions of the power sector in China’s eight regions: decomposition, decoupling, and prediction analysis. Environ Sci Pollut Res 26:29212–29233. https://doi.org/10.1007/s11356-019-05909-1

    CAS  Article  Google Scholar 

  61. Wang S, Zhu X, Song D, Wen Z, Chen B, Feng K (2019c) Drivers of CO2 emissions from power generation in China based on modified structural decomposition analysis. J Clean Prod 220:1143–1155. https://doi.org/10.1016/j.jclepro.2019.02.199

    Article  Google Scholar 

  62. Wang Z, Meng J, Guan D (2020a) Dynamic driving forces of India’s emissions from production and consumption perspectives. Earth’s Future 8:e2020EF001485. https://doi.org/10.1029/2020ef001485

    CAS  Article  Google Scholar 

  63. Wang P-T, Wei Y-M, Yang B, Li J-Q, Kang J-N, Liu L-C, Yu B-Y, Hou Y-B, Zhang X (2020b) Carbon capture and storage in China’s power sector: optimal planning under the 2 °C constraint. Appl Energy 263:114694. https://doi.org/10.1016/j.apenergy.2020.114694

    Article  Google Scholar 

  64. Wen L, Li Z (2020) Provincial-level industrial CO2 emission drivers and emission reduction strategies in China: combining two-layer LMDI method with spectral clustering. Sci Total Environ 700:134374. https://doi.org/10.1016/j.scitotenv.2019.134374

    CAS  Article  Google Scholar 

  65. Xu Y, Yang K, Yuan J (2020) China’s power transition under the global 1.5 degrees C target: preliminary feasibility study and prospect. Environ Sci Pollut Res 27:15113–15129. https://doi.org/10.1007/s11356-020-08085-9

    CAS  Article  Google Scholar 

  66. Yang J, Cai W, Ma M, Li L, Liu C, Ma X, Li L, Chen X (2020) Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci Total Environ 711:134569. https://doi.org/10.1016/j.scitotenv.2019.134569

    CAS  Article  Google Scholar 

  67. Yuan R, Zhao T (2016) Changes in CO2 emissions from China’s energy-intensive industries: a subsystem input–output decomposition analysis. J Clean Prod 117:98–109. https://doi.org/10.1016/j.jclepro.2015.11.081

    Article  Google Scholar 

  68. Yuan J, Na C, Lei Q, Xiong M, Guo J, Hu Z (2018) Coal use for power generation in China. Resour Conserv Recycl 129:443–453. https://doi.org/10.1016/j.resconrec.2016.03.021

    Article  Google Scholar 

  69. Zhang C, Zhang M, Zhang N (2017) CO2 Emissions from the power industry in the China’s Beijing-Tianjin-Hebei region: decomposition and policy analysis. Pol J Environ Stud 26:903–916. https://doi.org/10.15244/pjoes/66718

    CAS  Article  Google Scholar 

  70. Zhang Y, Zhang F, Wu S (2019) Chapter 1 - Review and outlook of world energy development. In: Zhang Y et al (eds) Non-fossil energy development in China. Academic Press, Oxford, pp 1–36. https://doi.org/10.1016/B978-0-12-813106-0.00001-5

    Google Scholar 

  71. Zhang P, Cai W, Yao M, Wang Z, Yang L, Wei W (2020) Urban carbon emissions associated with electricity consumption in Beijing and the driving factors. Appl Energy 275:115425. https://doi.org/10.1016/j.apenergy.2020.115425

    Article  Google Scholar 

  72. Zhao Y, Cao Y, Shi X, Li H, Shi Q, Zhang Z (2020) How China’s electricity generation sector can achieve its carbon intensity reduction targets? Sci Total Environ 706:135689. https://doi.org/10.1016/j.scitotenv.2019.135689

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their valuable comments and suggestions.

Funding

This work was funded by the Major Program of Social Science Foundation of Tianjin Municipal Education Commission (No. 2016JWZD04) and the Ministry of Education of Humanities and Social Science Research Fund Plan (No. 15YJA790091).

Author information

Affiliations

Authors

Contributions

YW did the data collection and decomposition analysis and writing the original draft. TZ came up with this research idea and financially supported this work. JW analyzed existing literatures and provided a lot of work for the revision of the paper. XZ was responsible for the preliminary investigation and data collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Eyup Dogan

Appendix. Supplementary information

ESM 1

(DOC 224 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhao, T., Wang, J. et al. Exploring the impact of transition in energy mix on the CO2 emissions from China’s power generation sector based on IDA and SDA. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12599-1

Download citation

Keywords

  • China’s power generation sector
  • CO2 emissions
  • Index decomposition analysis
  • Structural decomposition analysis
  • Energy mix transition