Antibiotic exposure and potential risk of depression in the Chinese elderly: a biomonitoring-based population study

Abstract

Objective

To examine the associations between urinary antibiotics from various sources and depression in the elderly using the biomonitoring method.

Methods

In the current study, we investigated 990 elderly individuals (≥ 60 years old) from a community-based elderly cohort in West Anhui, China. The participants were interviewed by the Geriatric Depression Scale and self-developed questionnaires. A total of 45 antibiotics belonging to nine categories were screened in urine samples by the developed liquid chromatography electrospray tandem mass spectrometry method. Creatinine-corrected concentrations of antibiotics in urines were used to assess their exposure. Logistic regression analysis was employed to test the relationships between exposure to antibiotics and depression.

Results

Compared to the control group, the multinomial logistic regression analyses showed the elderly exposed to higher concentrations of azithromycin (OR = 1.81, 95% CI: 1.09–3.00) and sulfaclozine (OR = 1.54, 95% CI: 1.05–2.28) had increased risks of depression, respectively. After categorizing the detected antibiotics, tetracyclines (OR = 1.48, 95% CI: 1.02–2.16) and veterinary antibiotics (VAs) (OR = 1.53, 95% CI: 1.06–2.20) were positively correlated with increased risks of depression. After stratified by sex, the VAs (OR = 2.04, 95% CI: 1.13–3.71) at higher concentrations were associated with elevated risks of depression in males, while the associations between depression and antibiotic exposures were observed in tetracyclines (OR = 1.74, 95% CI: 1.04–2.85) and all antibiotics (OR = 2.24, 95% CI: 1.01–2.94) at higher levels in females, respectively. Notably, after the stratification by age, the significant associations were mainly present in the subjects under the age of 70.

Conclusions

Our findings reveal that azithromycin, sulfaclozine, tetracyclines, and the VAs were significantly associated with elevated risks of depression in the elderly. Importantly, sex- and age-specific differences were observed in the associations between antibiotic exposures and depression.

This is a preview of subscription content, access via your institution.

Data availability

The datasets generated during and analyzed during the current study are not publicly available due to the privacy of the research group, but are available from the corresponding author on reasonable request.

References

  1. Abrams E, Netchiporouk E, Miedzybrodzki B, Ben-Shoshan M (2019) Antibiotic allergy in children: more than just a label. Int Arch Allergy Immunol 180:103–112. https://doi.org/10.1159/000501518

    CAS  Article  Google Scholar 

  2. Almeida AR, Tacão M, Machado AL, Golovko O, Zlabek V, Domingues I, Henriques I (2019) Long-term effects of oxytetracycline exposure in zebrafish: a multi-level perspective. Chemosphere 222:333–344. https://doi.org/10.1016/j.chemosphere.2019.01.147

    CAS  Article  Google Scholar 

  3. An R, Wilms E, Masclee AAM, Smidt H, Zo Etendal EG, Jonkers D (2018) Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut 67:2213–2222. https://doi.org/10.1136/gutjnl-2017-315542

    CAS  Article  Google Scholar 

  4. Anonymous (1997) Medical Association declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA Jama J Am Med Assoc 277:925–926. https://doi.org/10.1001/jama.1997.03540350075038

    Article  Google Scholar 

  5. Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22:458–478. https://doi.org/10.1016/j.molmed.2016.04.003

    CAS  Article  Google Scholar 

  6. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485. https://doi.org/10.1016/j.cub.2016.04.016

    CAS  Article  Google Scholar 

  7. Bungau S, Tit DM, Behl T, Aleya L, Zaha DC (2021) Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Curr Opin Environ Sci Health 19:100224. https://doi.org/10.1016/j.coesh.2020.10.012

    Article  Google Scholar 

  8. Champagne-Jorgensen K, Mian MF, Kay S, Hanani H, Ziv O, McVey Neufeld KA, Koren O, Bienenstock J (2020) Prenatal low-dose penicillin results in long-term sex-specific changes to murine behaviour, immune regulation, and gut microbiota. Brain Behav Immun 84:154–163. https://doi.org/10.1016/j.bbi.2019.11.020

    CAS  Article  Google Scholar 

  9. Chan AC (1996) Clinical validation of the Geriatric Depression Scale (GDS): Chinese version. J Aging Health 8:238–253. https://doi.org/10.1177/089826439600800205

    CAS  Article  Google Scholar 

  10. Chatterjee A, Modarai M, Naylor NR, Boyd SE, Atun R, Barlow J, Holmes AH, Johnson A, Robotham JV (2018) Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect Dis 18:e368–e378. https://doi.org/10.1016/s1473-3099(18)30296-2

    CAS  Article  Google Scholar 

  11. Chen J, Ying GG, Deng WJ (2019) Antibiotic residues in food: extraction, analysis, and human health concerns. J Agric Food Chem 67(27):7569–7586. https://doi.org/10.1021/acs.jafc.9b01334

    CAS  Article  Google Scholar 

  12. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591. https://doi.org/10.1073/pnas.1000097107

    Article  Google Scholar 

  13. Cone LA, Padilla L, Potts BE (2003) Delirium in the elderly resulting from azithromycin therapy. Surg Neurol 59:509–511. https://doi.org/10.1016/s0090-3019(03)00065-x

    Article  Google Scholar 

  14. Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595:489–503. https://doi.org/10.1113/jp273106

    CAS  Article  Google Scholar 

  15. Dinleyici M, Yildirim GK, Aydemir O, Kaya TB, Bildirici Y, Carman KB (2018) Human milk antibiotic residue levels and their relationship with delivery mode, maternal antibiotic use and maternal dietary habits. Eur Rev Med Pharmacol Sci 22(19):6560–6566. https://doi.org/10.26355/eurrev_201810_16072

    CAS  Article  Google Scholar 

  16. Dong Y, Steins D, Sun S, Li F, Amor JD, James CJ, Xia Z, Dawes H, Izadi H, Cao Y, Wade DT (2018) Does feedback on daily activity level from a Smart watch during inpatient stroke rehabilitation increase physical activity levels? Study protocol for a randomized controlled trial. Trials 19:177. https://doi.org/10.1186/s13063-018-2476-z

    Article  Google Scholar 

  17. Dutta SK, Verma S, Jain V, Surapaneni BK, Vinayek R, Phillips L, Nair PP (2019) Parkinson’s disease: the emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation. J Neurogastroenterol Motil 25:363–376. https://doi.org/10.5056/jnm19044

    Article  Google Scholar 

  18. Feng L, Cheng Y, Zhang Y, Li Z, Yu Y, Feng L, Zhang S, Xu L (2020) Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. Environ Res 185:109386. https://doi.org/10.1016/j.envres.2020.109386

    CAS  Article  Google Scholar 

  19. Firth A, Prathapan P (2020) Azithromycin: the first broad-spectrum therapeutic. Eur J Med Chem 207:112739. https://doi.org/10.1016/j.ejmech.2020.112739

    CAS  Article  Google Scholar 

  20. Fraser GE, Welch A, Luben R, Bingham SA, Day NE (2000) The effect of age, sex, and education on food consumption of a middle-aged English cohort-EPIC in East. Anglia Prev Med 30:26–34. https://doi.org/10.1006/pmed.1999.0598

    CAS  Article  Google Scholar 

  21. Gao H, Shu Q, Chen J, Fan K, Xu P, Zhou Q, Li C, Zheng H (2019) Antibiotic exposure has sex-dependent effects on the gut microbiota and metabolism of short-chain fatty acids and amino acids in mice. mSystems 4. https://doi.org/10.1128/mSystems.00048-19

  22. Grigoryan L, Germanos G, Zoorob R, Juneja S, Raphael JL, Paasche-Orlow MK, Trautner BW (2019) Use of antibiotics without a prescription in the U.S. population: a scoping review. Ann Intern Med 171:257–263. https://doi.org/10.7326/m19-0505

    Article  Google Scholar 

  23. Guida F, Turco F, Iannotta M, De Gregorio D, Palumbo I, Sarnelli G, Furiano A, Napolitano F, Boccella S, Luongo L, Mazzitelli M, Usiello A, De Filippis F, Iannotti FA, Piscitelli F, Ercolini D, de Novellis V, Di Marzo V, Cuomo R, Maione S (2018) Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun 67:230–245. https://doi.org/10.1016/j.bbi.2017.09.001

    CAS  Article  Google Scholar 

  24. Hao WZ, Li XJ, Zhang PW, Chen JX (2020) A review of antibiotics, depression, and the gut microbiome. Psychiatry Res 284:112691. https://doi.org/10.1016/j.psychres.2019.112691

    CAS  Article  Google Scholar 

  25. Havers FP, Hicks LA, Chung JR, Gaglani M, Murthy K, Zimmerman RK, Jackson LA, Petrie JG, McLean HQ, Nowalk MP, Jackson ML, Monto AS, Belongia EA, Flannery B, Fry AM (2018) Outpatient antibiotic prescribing for acute respiratory infections during influenza seasons. JAMA Netw Open 1:e180243. https://doi.org/10.1001/jamanetworkopen.2018.0243

    Article  Google Scholar 

  26. Hou X, Lu J, Weng J, Ji L, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, Yang Z, Yang W, Jia W (2013) Impact of waist circumference and body mass index on risk of cardiometabolic disorder and cardiovascular disease in Chinese adults: a national diabetes and metabolic disorders survey. PLoS One 8:e57319. https://doi.org/10.1371/journal.pone.0057319

    CAS  Article  Google Scholar 

  27. Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R (2019) Testosterone disruptor effect and gut microbiome perturbation in mice: early life exposure to doxycycline. Chemosphere 222:722–731. https://doi.org/10.1016/j.chemosphere.2019.01.101

    CAS  Article  Google Scholar 

  28. Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH (2019) Current understanding of gut microbiota in mood disorders: an update of human studies. Front Genet 10:98. https://doi.org/10.3389/fgene.2019.00098

    CAS  Article  Google Scholar 

  29. Ilgin S, Can OD, Atli O, Ucel UI, Sener E, Guven I (2015) Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicol Mech Methods 25:374–381. https://doi.org/10.3109/15376516.2015.1026008

    CAS  Article  Google Scholar 

  30. Jahansouz C, Staley C, Kizy S, Xu H, Hertzel AV, Coryell J, Singroy S, Hamilton M, DuRand M, Bernlohr DA, Sadowsky MJ, Khoruts A, Ikramuddin S (2019) Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy. Ann Surg 269:1092–1100. https://doi.org/10.1097/SLA.0000000000002729

    Article  Google Scholar 

  31. Jašarević E, Morrison KE, Bale TL (2016) Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond Ser B Biol Sci 371:20150122. https://doi.org/10.1098/rstb.2015.0122

    CAS  Article  Google Scholar 

  32. Kang HS, Lee SB, Shin D, Jeong J, Hong JH, Rhee GS (2018) Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control 85:57–65

    CAS  Article  Google Scholar 

  33. Katzman R, Zhang MY, Ouang Ya Q, Wang ZY, Liu WT, Yu E, Wong SC, Salmon DP, Grant I (1988) A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41:971–978. https://doi.org/10.1016/0895-4356(88)90034-0

    CAS  Article  Google Scholar 

  34. Kaur K, Fayad R, Saxena A, Frizzell N, Chanda A, Das S, Chatterjee S, Hegde S, Baliga MS, Ponemone V, Rorro M, Greene J, Elraheb Y, Redd AJ, Bian J, Restaino J, Norris LB, Qureshi ZP, Love BL, Brookstaver B, Georgantopoulos P, Sartor O, Raisch DW, Rao G, Lu K, Ray P, Hrusheshky W, Schulz R, Ablin R, Noxon V, Bennett CL, Southern Network on Adverse Reactions Project (2016) Fluoroquinolone-related neuropsychiatric and mitochondrial toxicity: a collaborative investigation by scientists and members of a social network. J Commun Support Oncol 14:54–65. https://doi.org/10.12788/jcso.0167

    CAS  Article  Google Scholar 

  35. Kiel A, Catalano A, Clark CM, Wattengel BA, Mason J, Sellick J, Mergenhagen KA (2020) Antibiotic prescribing in the emergency department versus primary care: implications for stewardship. J Am Pharm Assoc : JAPhA 60:789–795.e782. https://doi.org/10.1016/j.japh.2020.03.016

    Article  Google Scholar 

  36. Kurjogi M, Issa Mohammad YH, Alghamdi S, Abdelrahman M, Satapute P, Jogaiah S (2019) Detection and determination of stability of the antibiotic residues in cow’s milk. PLoS One 14:e0223475. https://doi.org/10.1371/journal.pone.0223475

    CAS  Article  Google Scholar 

  37. Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, Forsythe P, Bienenstock J (2017) Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 8:15062. https://doi.org/10.1038/ncomms15062

    CAS  Article  Google Scholar 

  38. Li Y-W, Wu X-L, Mo C-H, Tai Y-P, Huang X-P, Xiang L (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China. J Agric Food Chem 59:7268–7276. https://doi.org/10.1021/jf1047578

    CAS  Article  Google Scholar 

  39. Li H, Jia J, Yang Z (2016) Mini-Mental State Examination in Elderly Chinese: A Population-Based Normative Study. J Alzheimers Dis 53:487–496. https://doi.org/10.3233/jad-160119

    Article  Google Scholar 

  40. Li N, Ho KWK, Ying GG, Deng WJ (2017) Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. Environ Int 108:246–252. https://doi.org/10.1016/j.envint.2017.08.014

    CAS  Article  Google Scholar 

  41. Li XD, Cao HJ, Xie SY, Li KC, Tao FB, Yang LS, Zhang JQ, Bao YS (2019) Adhering to a vegetarian diet may create a greater risk of depressive symptoms in the elderly male Chinese population. J Affect Disord 243:182–187. https://doi.org/10.1016/j.jad.2018.09.033

    Article  Google Scholar 

  42. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International 59:208–224. https://doi.org/10.1016/j.envint.2013.06.012

    CAS  Article  Google Scholar 

  43. Liu S, Zhao G, Zhao H, Zhai G, Chen J, Zhao H (2017) Antibiotics in a general population: Relations with gender, body mass index (BMI) and age and their human health risks. Sci Total Environ 599-600:298–304. https://doi.org/10.1016/j.scitotenv.2017.04.216

    CAS  Article  Google Scholar 

  44. Liu W, Hassan Gillani A, Xu S, Chen C, Chang J, Yang C, Ji W, Jiang M, Zhao M, Fang Y (2020) Antibiotics (Macrolides and Lincosamides) Consumption trends and patterns in China’s Healthcare Institutes. Based on a 3 year procurement records, 2015-2017. Int J Environ Res Public Health 18:113. https://doi.org/10.3390/ijerph18010113

    CAS  Article  Google Scholar 

  45. Lurie I, Yang YX, Haynes K, Mamtani R, Boursi B (2015) Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. J Clin Psychiatry 76:1522–1528. https://doi.org/10.4088/JCP.15m09961

    Article  Google Scholar 

  46. Muaz K, Riaz M, Akhtar S, Park S, Ismail A (2018) Antibiotic residues in chicken meat: global prevalence, threats, and decontamination strategies: a review. J Food Prot 81:619–627. https://doi.org/10.4315/0362-028x.jfp-17-086

    CAS  Article  Google Scholar 

  47. Murphy JR, Paul S, Dunlop AL, Corwin EJ (2018) Maternal peripartum antibiotic exposure and the risk of postpartum depression. Res Nurs Health 41:369–377. https://doi.org/10.1002/nur.21881

    Article  Google Scholar 

  48. Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK, Jiang S, Midani FS, Nimmagadda SN, O’Connell TM, Wright JP, Deshusses MA, David LA (2018) Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 7:e35987. https://doi.org/10.7554/eLife.35987

    Article  Google Scholar 

  49. Schiff E, May K, Goldstein LH (2010) Neuropsychiatric manifestations associated with azithromycin in two brothers. Eur J Clin Pharmacol 66:1273–1275. https://doi.org/10.1007/s00228-010-0900-8

    Article  Google Scholar 

  50. Schlomann BH, Wiles TJ, Wall ES, Guillemin K, Parthasarathy R (2019) Sublethal antibiotics collapse gut bacterial populations by enhancing aggregation and expulsion. Proc Natl Acad Sci U S A 116:21392–21400. https://doi.org/10.1073/pnas.1907567116

    CAS  Article  Google Scholar 

  51. Schutzius G, Nguyen M, Navab-Daneshmand T (2019) Antibiotic resistance in fecal sludge and soil in Ho Chi Minh City, Vietnam. Environ Sci Pollut Res Int 26:34521–34530. https://doi.org/10.1007/s11356-019-06537-5

    CAS  Article  Google Scholar 

  52. Sylvia KE, Jewell CP, Rendon NM, St John EA, Demas GE (2017) Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav Immun 60:51–62. https://doi.org/10.1016/j.bbi.2016.10.023

    Article  Google Scholar 

  53. Tang J, Shi T, Wu X, Cao H, Li X, Hua R, Tang F, Yue Y (2015) The occurrence and distribution of antibiotics in Lake Chaohu, China: seasonal variation, potential source and risk assessment. Chemosphere 122:154–161. https://doi.org/10.1016/j.chemosphere.2014.11.032

    CAS  Article  Google Scholar 

  54. Wang Q, Tian W (2018) Prevalence, awareness, and treatment of depressive symptoms among the middle-aged and elderly in China from 2008 to 2015. Int J Health Plann Manag 33:1060–1070. https://doi.org/10.1002/hpm.2581

    Article  Google Scholar 

  55. Wang H, Wang N, Wang B, Fang H, Fu C, Tang C, Jiang F, Zhou Y, He G, Zhao Q, Chen Y, Jiang Q (2016) Antibiotics detected in urines and adipogenesis in school children. Environ Int 89-90:204–211. https://doi.org/10.1016/j.envint.2016.02.005

    CAS  Article  Google Scholar 

  56. Wang H, Wang N, Qian J, Hu L, Huang P, Su M, Yu X, Fu C, Jiang F, Zhao Q, Zhou Y, Lin H, He G, Chen Y, Jiang Q (2017) Urinary antibiotics of pregnant women in Eastern China and cumulative health risk assessment. Environ Sci Technol 51:3518–3525. https://doi.org/10.1021/acs.est.6b06474

    CAS  Article  Google Scholar 

  57. Wang H, Tang C, Yang J, Wang N, Jiang F, Xia Q, He G, Chen Y, Jiang Q (2018a) Predictors of urinary antibiotics in children of Shanghai and health risk assessment. Environ Int 121:507–514. https://doi.org/10.1016/j.envint.2018.09.032

    CAS  Article  Google Scholar 

  58. Wang H, Yang J, Yu X, Zhao G, Zhao Q, Wang N, Jiang Y, Jiang F, He G, Chen Y, Zhou Z, Jiang Q (2018b) Exposure of adults to antibiotics in a shanghai suburban area and health risk assessment: a biomonitoring-based study. Environ Sci Technol 52:13942–13950. https://doi.org/10.1021/acs.est.8b03979

    CAS  Article  Google Scholar 

  59. Wang S, Qu Y, Chang L, Pu Y, Zhang K, Hashimoto K (2020) Antibiotic-induced microbiome depletion is associated with resilience in mice after chronic social defeat stress. J Affect Disord 260:448–457. https://doi.org/10.1016/j.jad.2019.09.064

    CAS  Article  Google Scholar 

  60. Wei R, Ge F, Huang S, Chen M, Wang R (2011) Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 82:1408–1414. https://doi.org/10.1016/j.chemosphere.2010.11.067

    CAS  Article  Google Scholar 

  61. Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, Trivedi U, Bisgaard H, Sørensen SJ (2018) Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: a double-blind, randomized, placebo-controlled trial. EBi oMedicine 38:265–272. https://doi.org/10.1016/j.ebiom.2018.11.035

    Article  Google Scholar 

  62. Yang Z, Li J, Gui X, Shi X, Bao Z, Han H, Li MD (2020) Updated review of research on the gut microbiota and their relation to depression in animals and human beings. Mol Psychiatry 25:2759–2772. https://doi.org/10.1038/s41380-020-0729-1

    Article  Google Scholar 

  63. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    CAS  Article  Google Scholar 

  64. Zaha DC, Bungau S, Aleya S, Tit DM, Vesa CM, Popa AR, Pantis C, Maghiar OA, Bratu OG, Furau C, Moleriu RD, Petre I, Aleya L (2019) What antibiotics for what pathogens? The sensitivity spectrum of isolated strains in an intensive care unit. Sci Total Environ 687:118–127. https://doi.org/10.1016/j.scitotenv.2019.06.076

    CAS  Article  Google Scholar 

  65. Zaha DC, Bungau S, Uivarosan D, Tit DM, Maghiar TA, Maghiar O, Pantis C, Fratila O, Rus M, Vesa CM (2020) Antibiotic consumption and microbiological epidemiology in surgery departments: results from a single study center. Antibiotics (Basel) 9(2):81. https://doi.org/10.3390/antibiotics9020081

    Article  Google Scholar 

  66. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782. https://doi.org/10.1021/acs.est.5b00729

    CAS  Article  Google Scholar 

  67. Zhang Q, Zhang D, Liu KY, Liu YH, Sheng J, Jin ZX, Wang SF, Bo QL, Wang JJ, Yin HF (2017) Perinatal sulfamonomethoxine exposure influences physiological and behavioral responses and the brain mTOR pathway in mouse offspring. Hum Exp Toxicol 36:256–275. https://doi.org/10.1177/0960327116646839

    CAS  Article  Google Scholar 

  68. Zhang J, Liu X, Zhu Y, Yang L, Sun L, Wei R, Chen G, Wang Q, Sheng J, Liu A, Tao F, Liu K (2020) Antibiotic exposure across three generations from Chinese families and cumulative health risk. Ecotoxicol Environ Saf 191:110237. https://doi.org/10.1016/j.ecoenv.2020.110237

    CAS  Article  Google Scholar 

  69. Zhu Y, Liu K, Zhang J, Liu X, Yang L, Wei R, Wang S, Zhang D, Xie S, Tao F (2020) Antibiotic body burden of elderly Chinese population and health risk assessment: a human biomonitoring-based study. Environ Pollut 256:113311. https://doi.org/10.1016/j.envpol.2019.113311

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank all the staff and students who made contributions to the cohort study. We thank all the study participants for their support. We are deeply grateful for the help provided by all the members (Guanjun Chen, Sheng Wang and Shulong Li) in the Center for Scientific Research of Anhui Medical University. This work was supported by the National Natural Science Foundation of China (82073558), the Key Projects of Natural Science Research in Colleges and Universities of Anhui province (KJ2018A0164), and the Major Projects on College Leading Talent Team Introduced of Anhui (0303011224). We are deeply grateful for the help provided by all the members in the experimental center platform for physical and chemical of Anhui Medical University.

Funding

This study was funded by the National Natural Science Foundation of China (82073558), the Key Projects of Natural Science Research in Colleges and Universities of Anhui province (KJ2018A0164), and Major Projects on College Leading Talent Team Introduced of Anhui (0303011224).

Author information

Affiliations

Authors

Contributions

Xinji Liu: formal analysis, data curation, writing—Original Draft. Jingjing Zhang: data curation, writing—review and editing. Kaiyong Liu: investigation, conceptualization, methodology, supervision. Yanru Sang: investigation, resources. Yitian Zhu: investigation, resources. Linsheng Yang: investigation, resources. Sufang Wang: investigation, resources. Jie Sheng: investigation, resources. Qunan Wang: investigation, resources. Dongmei Zhang: investigation, resources. Hongjuan Cao: investigation, resources. Fangbiao Tao: validation, conceptualization, supervision.

Corresponding author

Correspondence to Kaiyong Liu.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee of Anhui Medical University (No. 20170284). Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lotfi Aleya

Supplementary Information

ESM 1

(DOCX 198 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, J., Sang, Y. et al. Antibiotic exposure and potential risk of depression in the Chinese elderly: a biomonitoring-based population study. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12560-2

Download citation

Keywords

  • Depression
  • Elderly
  • Antibiotics
  • Biomonitoring
  • Urine
  • China