Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing

Abstract

With the rapid growth of municipal solid waste (MSW) generation, waste-to-energy (WTE) incineration has gained popularity due to its potential for electricity generation and swiftly reducing the volume and mass of MSW. Recognizing the urgency of MSW management, Beijing’s government launched the “MSW Source Separation Regulation” on May 1, 2020. This paper attempts to take into account the different levels of MSW source separation as well as the impact of different MSW compositions on energy recovery potential from incineration. We assume that the MSW management level in Beijing in 2025 will reach that of developed countries (e.g., Australia), which have abundant experience and mature MSW management systems. The amount of MSW generation is predicted by a first-order and one-variable grey differential equation model, GM (1,1), and a kernel-based nonlinear multivariate grey model, KGM (1,n). We establish six scenarios and distinguish them by the composition and lower heating values (LHV) of MSW, considered with and without recycling and source separation to varying degrees. The predicted amount of MSW generation in 2025 is 11,505,400 tons with 2.255% mean absolute percentage error (MAPE). With increasing source separation and removal of food waste, the volume of electricity generated per ton of waste ranges from 0.336 to 1.114 MWh/ton. At its lowest, the cost of electricity generation is 977.60 yuan/MWh. The results not only provide implications for balancing the benefits and costs of implementing WTE incineration strategies but also shed light on government management of MSW source separation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data of MSW generation and its influencing factors are available in the China Statistical Yearbook repository, hyperlink to data source “https://data.cnki.net/yearbook/Single/N2020100004”. The data about the composition of MSW, LHV for each kind of components, are included in this published article Dastjerdi et al. (2019) and Li (2014).

References

  1. Abdallah M, Shanableh A, Arab M, Shabib A, Adghim M, El-Sherbiny R (2019) Waste to energy potential in middle income countries of MENA region based on multi-scenario analysis for Kafr El-Sheikh Governorate, Egypt. J Environ Manag 232:58–65. https://doi.org/10.1016/j.jenvman.2018.11.029

    Article  Google Scholar 

  2. Alrobaian AA (2020) Improving waste incineration CHP plant efficiency by waste heat recovery for feedwater preheating process: energy, exergy, and economic (3E) analysis. J Braz Soc Mech Sci Eng 42:403. https://doi.org/10.1007/s40430-020-02460-w

    CAS  Article  Google Scholar 

  3. Bosire E, Oindo B, Atieno JV (2017) Modeling household solid waste generation in urban estates using socioeconomic and demographic data, Kisumu City. Maseno University Repository, Kenya. https://repository.maseno.ac.ke/handle/123456789/441. Accessed 1 Mar 2020

  4. Chang YF, Lin CJ, Chyan JM, Chen IM, Chang JE (2007) Multiple regression models for the lower heating value of municipal solid waste in Taiwan. J Environ Manag 85:891–899. https://doi.org/10.1016/j.jenvman.2006.10.025

    CAS  Article  Google Scholar 

  5. Chen C (2010) Spatial inequality in municipal solid waste disposal across regions in developing countries. Int J Environ Sci Technol 7:447–456. https://doi.org/10.1007/BF03326154

    CAS  Article  Google Scholar 

  6. Dastjerdi B, Strezov V, Kumar R, Behnia M (2019) An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia. Renew Sust Energ Rev 115:109398. https://doi.org/10.1016/j.rser.2019.109398

    Article  Google Scholar 

  7. Dalmo FC, Simão NM, Lima HQD, Jimenez ACM, Nebra S, Martins G, Palacios-Bereche R, Sant’Ana PHM (2019) Energy recovery overview of municipal solid waste in São Paulo State, Brazil. J Clean Prod 212:461–474. https://doi.org/10.1016/j.jclepro.2018.12.016

    Article  Google Scholar 

  8. Deng JL (1982) Control problems of grey systems. Syst Control Lett 1:288–294. https://doi.org/10.1016/S0167-6911(82)80025-X

    Article  Google Scholar 

  9. Deng JL (1989) Introduction to grey system theory. J Grey Syst 1:1–24. https://pdfs.semanticscholar.org/3d6b/22f0a4611319a424235c7516eb5352645616.pdf. Accessed 5 Mar 2020

  10. Dong J, Tang YJ, Nzihou A, Chi Y, Weiss-Hortala E, Ni MJ (2018) Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants. Sci Total Environ 626:744–753. https://doi.org/10.1016/j.scitotenv.2018.01.151

    CAS  Article  Google Scholar 

  11. Escamilla-García PE, Camarillo-López RH, Carrasco-Hernández R, Fernández-Rodríguez E, Legal-Hernándeze JM (2020) Technical and economic analysis of energy generation from waste incineration in Mexico. Energy Strategy Rev 31:100542. https://doi.org/10.1016/j.esr.2020.100542

    Article  Google Scholar 

  12. Gohlke O (2009) Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 27:894–906. https://doi.org/10.1177/0734242X09349857

    CAS  Article  Google Scholar 

  13. Gu BX, Wang HK, Chen Z, Jiang SQ, Zhu WM, Liu MM, Chen YQ, Wu Y, He S, Cheng R, Yang J, Bi J (2015) Characterization, quantification and management of household solid waste: a case study in China. Resour Conserv Recycl 98:67–75. https://doi.org/10.1016/j.resconrec.2015.03.001

    Article  Google Scholar 

  14. He JX, Lin BQ (2019) Assessment of waste incineration power with considerations of subsidies and emissions in China. Energy Policy 126:190–199. https://doi.org/10.1016/j.enpol.2018.11.025

    Article  Google Scholar 

  15. Huber F (2020) Modelling of material recovery from waste incineration bottom ash. Waste Manag 105(15):61–72. https://doi.org/10.1016/j.wasman.2020.01.034

    CAS  Article  Google Scholar 

  16. Ju M, Bae SJ, Kim JY (2016) Lee DH (2016) Solid recovery rate of food waste recycling in South Korea. J Mater Cycles Waste Manag 18:419–426. https://doi.org/10.1007/s10163-015-0464-x

    CAS  Article  Google Scholar 

  17. Karak T, Bhagat RM, Bhattacharyya P (2012) Municipal solid waste generation, composition, and management: the world scenario. Crit Rev Environ Sci Technol 42:1509–1630. https://doi.org/10.1080/10643389.2011.569871

    CAS  Article  Google Scholar 

  18. Kayacan E, Ulutas B, Kaynak O (2010) Grey system theory-based models in time series prediction. Expert Syst Appl 37:1784–1789. https://doi.org/10.1016/j.eswa.2009.07.064

    Article  Google Scholar 

  19. Kourkoumpas DS, Karellas S, Kouloumoundras S, Koufodimos G, Grammelis P, Kakaras E (2015) Comparison of waste-to-energy processes by means of life cycle analysis principles regarding the global warming potential impact: applied case studies in Greece, France and Germany. Waste Biomass Valoriz 6:605–621. https://doi.org/10.1007/s12649-015-9367-2

    CAS  Article  Google Scholar 

  20. Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag 69:407–422. https://doi.org/10.1016/j.wasman.2017.08.046

    CAS  Article  Google Scholar 

  21. Li CY (2014) Beijing urban areas MSW physical and chemical properties investigation. Dissertation, Beijing University of Technology (in Chinese)

  22. Li XM, Zhang CM, Li YZ, Zhi Q (2016) The status of municipal solid waste incineration (MSWI) in China and its clean development. Energy Procedia 104:498–503

    Article  Google Scholar 

  23. Liu JH, Li Q, Gu W, Wang C (2019) The impact of consumption patterns on the generation of municipal solid waste in China: evidences from provincial data. Int J Environ Res Public Health 16:1717. https://doi.org/10.3390/ijerph16101717

    Article  Google Scholar 

  24. Liu SF, Forrest J (2007) The current developing status on grey system theory. J Grey Syst 19:111–123. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.2781&rep=rep1&type=pdf. Accessed 5 Mar 2020

  25. Lombardi L, Carnevale E, Corti A (2015) A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag 37:26–44. https://doi.org/10.1016/j.wasman.2014.11.010

    Article  Google Scholar 

  26. Lu JW, Zhang S, Hai J, Lei M (2017) Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions. Waste Manag 69:170–186. https://doi.org/10.1016/j.wasman.2017.04.014

    Article  Google Scholar 

  27. Ma X, Liu ZB (2018) The kernel-based nonlinear multivariate grey model. Appl Math Model 56:217–238. https://doi.org/10.1016/j.apm.2017.12.010

    Article  Google Scholar 

  28. Mamede MCS (2013) Economic and environmental assessment of the energy use of solid residues in Brazil. State University of Campinas (UNICAMP) (in Portuguese)

  29. Mehr J, Haupt M, Skutan S, Morf L, Adrianto LR, Weibel G, Hellweg S (2021) The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash. Waste Manag 119:330–341. https://doi.org/10.1016/j.wasman.2020.09.001

    CAS  Article  Google Scholar 

  30. Murer MJ, Spliethoff H, de Waal CM, Wilpshaar S, Berkhout B, van Berlo MA et al (2011) High efficient waste-to-energy in Amsterdam: getting ready for the next steps. Waste Manag Res J Int Solid Wastes Public Clean Assoc ISWA 29:20–29. https://doi.org/10.1177/0734242X11413334

    CAS  Article  Google Scholar 

  31. Oribe-Garcia I, Kamara-Esteban O, Martin C, Macarulla-Arenaza AM, Alonso-Vicario A (2015) Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay. Waste Manag 9:26–34. https://doi.org/10.1016/j.wasman.2015.02.017

    Article  Google Scholar 

  32. Phua ZH, Giannis A, Dong ZL, Lisak G, Ng WJ (2019) Characteristics of incineration ash for sustainable treatment and reutilization. Environ Sci Pollut Res 26:16974–16997. https://doi.org/10.1007/s11356-019-05217-8

    CAS  Article  Google Scholar 

  33. Prevention MP (2017) The nationwide annual report of municipal solid waste pollution prevention in large and medium cities of China (in Chinese). https://www.mee.gov.cn/hjzl/sthjzk/gtfwwrfz/201912/P020191220699179334061.pdf. Accessed 1 Mar 2020

  34. Song GJ, Sun YY, Zhao C, Liu S, Wang Y, Geng JB (2017) Social cost assessment report of municipal solid waste incineration in Beijing. Renmin University of China (in Chinese). http://nads.ruc.edu.cn/upfile/file/20170322152504_900619_56051.pdf. Accessed 7 Mar 2020

  35. Sun L, Fujii M, Tasaki T, Dong H, Ohnishi S (2018) Improving waste to energy rate by promoting an integrated municipal solid-waste management system. Resour Conserv Recycl 136:289–296. https://doi.org/10.1016/j.resconrec.2018.05.005

    Article  Google Scholar 

  36. Tan ST, Ho WS, Hashim H, Lee CT, Taib MR, Ho CS (2015) Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers Manag 102:111–120. https://doi.org/10.1016/j.enconman.2015.02.010

    Article  Google Scholar 

  37. Tang Y, Dong J, Chi Y, Zhou ZZ, Ni MJ (2017) Energy and exergy optimization of food waste pretreatment and incineration. Environ Sci Pollut Res 24:18434–18443. https://doi.org/10.1007/s11356-017-9396-4

    Article  Google Scholar 

  38. Thanh NP, Matsui Y, Fujiwara T (2010) Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. J Environ Manag 91:2307–2321. https://doi.org/10.1016/j.jenvman.2010.06.016

    CAS  Article  Google Scholar 

  39. Themelis NJ, Barrigga MED, Estevez P, Velasco MG (2013) Guidebook for the application of waste to energy technologies in Latin America and the Caribbean. Columbia University, Earth Engineering Center, New York

    Google Scholar 

  40. Xu L, Gao P, Cui S, Liu C (2013) A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Manag 33:1324–1331. https://doi.org/10.1016/j.wasman.2013.02.012

    Article  Google Scholar 

  41. Wang Z, Geng L (2015) Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. J Clean Prod 104:177–184. https://doi.org/10.1016/j.jclepro.2015.05.062

    CAS  Article  Google Scholar 

  42. Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, Amin NAS, Ho WS, Lee TH (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ Sci Pollut Res 27:7757–7784. https://doi.org/10.1007/s11356-020-07933-y

    Article  Google Scholar 

  43. Zaman AU (2014) Measuring waste management performance using the ‘Zero Waste Index’: the case of Adelaide, Australia. J Clean Prod 66:407–419. https://doi.org/10.1016/j.jclepro.2013.10.032

    Article  Google Scholar 

  44. Zeng B, Luo CM, Liu SF, Bai Y, Li C (2016) Development of an optimization method for the GM(1,N) model. Eng Appl Artif Intell 55:353–362. https://doi.org/10.1016/j.engappai.2016.08.007

    Article  Google Scholar 

  45. Zhang DQ, Tan SK, Gersberg RM (2010) Municipal solid waste management in China: status, problems and challenges. J Environ Manag 91:1623–1633. https://doi.org/10.1016/j.jenvman.2010.03.012

    CAS  Article  Google Scholar 

  46. Zhao XG, Jiang GW, Li A, Li Y (2016) Technology, cost, a performance of waste-to-energy incineration industry in China. Renew Sust Energ Rev 55:115–130. https://doi.org/10.1016/j.rser.2015.10.137

    Article  Google Scholar 

  47. Zhao S, Muhammad F, Yu L, Xia M, Huang X, Jiao BQ, Lu N, Li DW (2019) Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue-based alkali-activated cementitious materials. Environ Sci Pollut Res 26:25609–25620. https://doi.org/10.1007/s11356-019-05832-5

    CAS  Article  Google Scholar 

  48. Zhou ZZ, Tang YJ, Dong J, Chi Y, Ni MJ, Li N, Zhang YF (2018) Environmental performance evolution of municipal solid waste management by life cycle assessment in Hangzhou, China. J Environ Manag 227:23–33. https://doi.org/10.1016/j.jenvman.2018.08.083

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant numbers 72072010, 71702009 and 71803007); Beijing Social Science Fund (Grant number 20GLB017); the Ministry of Education of the People’sRepublic of China (Grant number 18YJC630170); and Fundamental Research Funds for the Central Universities (Grant numbers FRF-IDRY-19-009 and FRF-TP-20-024A2).

Author information

Affiliations

Authors

Contributions

WG proposed the original idea, developed research framework, collected data, wrote and edited the manuscript. DL analyzed the data, performed the data visualization, and wrote the original manuscript. CW wrote, edited, and proofread the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chen Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Liu, D. & Wang, C. Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12478-9

Download citation

Keywords

  • Waste-to-energy incineration
  • Waste source separation
  • Waste recycling
  • Cost-benefit analysis
  • Kernel-based nonlinear multivariate grey model
  • Electricity generation