Microplastic analysis in drinking water based on fractionated filtration sampling and Raman microspectroscopy

Abstract

Microplastics (MP) as emerging persistent pollutants were found in raw and drinking water worldwide. Since different methods were used, there is an urgent need for harmonized protocols for sampling, sample preparation, and analysis. In this study, a holistic and validated analytical workflow for MP analysis in aqueous matrices down to 5 μm is presented. For sampling of several cubic meters of water, an easily portable filter cascade unit with different pore sizes (100–20–5 μm) was developed and successfully applied for the sampling of three processed drinking waters, two tap waters and one groundwater. The size distribution and polymer types of MP were determined using a two-step semi-automated Raman microspectroscopy analysis. For quality control, comprehensive process blanks were considered at all times and a recovery test yielded an overall recovery of 81%. The average concentration of identified MP was 66 ± 76 MP/m3 ranging from 1 MP/m3 to 197 MP/m3. All found concentrations were below the limit of quantitation (LOQ) of 1880 MP/m3. The majority consisted of PE (86% ± 111%) while comparatively low numbers of PET (10% ± 25%), PP (3% ± 6%), and PA (1% ± 4%) were found. 79% of all particles were smaller than 20 μm. In summary, this study presents the application of a workflow for sampling and analysis of MP down to 5 μm with first results of no significant contamination in drinking water and groundwater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. (2007) DIN EN 13443–1 2007–12, Anlagen zur Behandlung von Trinkwasser innerhalb von Gebäuden - Mechanisch wirkende Filter - Teil_1: Filterfeinheit 80 μm bis 150 μm - Anforderungen an Ausführung, Sicherheit und Prüfung. DIN e.V., Berlin (in German)

  2. (2008) DIN 32645:2008–11, Chemische Analytik - Nachweis-, Erfassungs- und Bestimmungsgrenze unter Wiederholbedingungen - Begriffe, Verfahren, Auswertung. DIN e.V., Berlin (in German)

  3. Anger PM, von der Esch E, Baumann T, Elsner M, Niessner R, Ivleva NP (2018) Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends Anal Chem 109:214–226. https://doi.org/10.1016/j.trac.2018.10.010

    CAS  Article  Google Scholar 

  4. Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA (2018) Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res 142:426–440. https://doi.org/10.1016/j.watres.2018.05.060

    CAS  Article  Google Scholar 

  5. Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

    CAS  Article  Google Scholar 

  6. Bannick CG, Szewzyk R, Ricking M, Schniegler S, Obermaier N, Barthel AK, Altmann K, Eisentraut P, Braun U (2019) Development and testing of a fractionated filtration for sampling of microplastics in water. Water Res 149:650–658. https://doi.org/10.1016/j.watres.2018.10.045

    CAS  Article  Google Scholar 

  7. Barrows APW, Neumann CA, Berger ML, Shaw SD (2017) Grab vs. neuston tow net: a microplastic sampling performance comparison and possible advances in the field. Anal Methods 9:1446–1453. https://doi.org/10.1039/C6AY02387H

    CAS  Article  Google Scholar 

  8. Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G (2019) White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv 5:1157. https://doi.org/10.1126/sciadv.aax1157

    CAS  Article  Google Scholar 

  9. Bruge A, Dhamelincourt M, Lanceleur L, Monperrus M, Gasperi J, Tassin B (2020) A first estimation of uncertainties related to microplastic sampling in rivers. Sci Total Environ 718:137319. https://doi.org/10.1016/j.scitotenv.2020.137319

    CAS  Article  Google Scholar 

  10. Cabernard L, Roscher L, Lorenz C, Gerdts G, Primpke S (2018) Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ Sci Technol 52:13279–13288. https://doi.org/10.1021/acs.est.8b03438

    CAS  Article  Google Scholar 

  11. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182. https://doi.org/10.1016/j.watres.2016.01.002

    CAS  Article  Google Scholar 

  12. Dierkes G, Lauschke T, Becher S, Schumacher H, Földi C, Ternes T (2019) Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal Bioanal Chem 411:6959–6968. https://doi.org/10.1007/s00216-019-02066-9

    CAS  Article  Google Scholar 

  13. Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, Braun U (2017) Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut 231:1256–1264. https://doi.org/10.1016/j.envpol.2017.08.074

    CAS  Article  Google Scholar 

  14. Enders K, Lenz R, Stedmon CA, Nielsen TG (2015) Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull 100:70–81. https://doi.org/10.1016/j.marpolbul.2015.09.027

    CAS  Article  Google Scholar 

  15. Frère L, Paul-Pont I, Moreau J, Soudant P, Lambert C, Huvet A, Rinnert E (2016) A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter. Mar Pollut Bull 113:461–468. https://doi.org/10.1016/j.marpolbul.2016.10.051

    CAS  Article  Google Scholar 

  16. Funck M, Yildirim A, Nickel C, Schram J, Schmidt TC, Tuerk J (2019) Identification of microplastics in wastewater after cascade filtration using pyrolysis-GC-MS. MethodsX 7:100778. https://doi.org/10.1016/j.mex.2019.100778

    Article  Google Scholar 

  17. Gasperi J, Wright SL, Dris R, Collard F, Mandin C, Guerrouache M, Langlois V, Kelly FJ, Tassin B (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5. https://doi.org/10.1016/j.coesh.2017.10.002

    Article  Google Scholar 

  18. Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, Herrling MP, Hess MC, Ivleva NP, Lusher A, Wagner M (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol 53:1039–1047. https://doi.org/10.1021/acs.est.8b05297

    CAS  Article  Google Scholar 

  19. Hermsen E, Mintenig SM, Besseling E, Koelmans AA (2018) Quality criteria for the analysis of microplastic in biota samples: a critical review. Environ Sci Technol 52:10230–10240. https://doi.org/10.1021/acs.est.8b01611

    CAS  Article  Google Scholar 

  20. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. https://doi.org/10.1021/es2031505

    CAS  Article  Google Scholar 

  21. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    CAS  Article  Google Scholar 

  22. Käppler A, Windrich F, Loeder MGJ, Malanin M, Fischer D, Labrenz M, Eichhorn K-J, Voit B (2015) Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(−1) for FTIR transmission measurements. Environ Sci Technol 407:6791–6801. https://doi.org/10.1007/s00216-015-8850-8

    CAS  Article  Google Scholar 

  23. Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, Voit B (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal bioanal.Chem 408:8377–8391. https://doi.org/10.1007/s00216-016-9956-3

  24. Karlsson TM, Kärrman A, Rotander A, Hassellöv M (2020) Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environ Sci Pollut Res 27:5559–5571. https://doi.org/10.1007/s11356-019-07274-5

    Article  Google Scholar 

  25. Klein M, Fischer EK (2019) Microplastic abundance in atmospheric deposition within the metropolitan area of Hamburg, Germany. Sci Total Environ 685:96–103. https://doi.org/10.1016/j.scitotenv.2019.05.405

    CAS  Article  Google Scholar 

  26. Koelmans AA, Hazimah N, Hermsen E, Kooi M, Mintenig SM, Jd F (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422. https://doi.org/10.1016/j.watres.2019.02.054

    CAS  Article  Google Scholar 

  27. Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13:1–18. https://doi.org/10.1371/journal.pone.0194970

    CAS  Article  Google Scholar 

  28. Lenz R, Labrenz M (2018) Small microplastic sampling in water: development of an encapsulated filtration device. Water 10:2–8. https://doi.org/10.3390/w10081055

    CAS  Article  Google Scholar 

  29. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG (2015) A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100:82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026

    CAS  Article  Google Scholar 

  30. Mani T, Primpke S, Lorenz C, Gerdts G, Burkhardt-Holm P (2019) Microplastic pollution in benthic mid-stream sediments of the Rhine River. Environ Sci Technol 53:6053–6062. https://doi.org/10.1021/acs.est.9b01363

    CAS  Article  Google Scholar 

  31. Mintenig SM, Int-Veen I, Loeder MGJ, Primpke S, Gerdts G (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372. https://doi.org/10.1016/j.watres.2016.11.015

    CAS  Article  Google Scholar 

  32. Mintenig SM, Loeder MGJ, Primpke S, Gerdts G (2019) Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 648:631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178

    CAS  Article  Google Scholar 

  33. Müller YK, Wernicke T, Pittroff M, Witzig CS, Storck FR, Klinger J, Zumbülte N (2020) Microplastic analysis - are we measuring the same?: results on the first global comparative study for microplastic analysis in a water sample. Anal Bioanal Chem 53:1039–1560. https://doi.org/10.1007/s00216-019-02311-1

    CAS  Article  Google Scholar 

  34. Novotna K, Cermakova L, Pivokonska L, Cajthaml T, Pivokonsky M (2019) Microplastics in drinking water treatment – current knowledge and research needs. Sci Total Environ 667:730–740. https://doi.org/10.1016/j.scitotenv.2019.02.431

    CAS  Article  Google Scholar 

  35. Oßmann BE, Sarau G, Schmitt SW, Holtmannspoetter H, Christiansen SH, Dicke W (2017) Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy. Anal Bioanal Chem 409:4099–4109. https://doi.org/10.1007/s00216-017-0358-y

    CAS  Article  Google Scholar 

  36. Oßmann BE, Sarau G, Holtmannspoetter H, Pischetsrieder M, Christiansen SH, Dicke W (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316. https://doi.org/10.1016/j.watres.2018.05.027

    CAS  Article  Google Scholar 

  37. Piehl S, Leibner A, Loeder MGJ, Dris R, Bogner C, Laforsch C (2018) Identification and quantification of macro- and microplastics on an agricultural farmland. Sci Rep 8:17950. https://doi.org/10.1038/s41598-018-36172-y

    CAS  Article  Google Scholar 

  38. Pinto da Costa J, Paço A, Santos PSM, Duarte AC, Rocha-Santos TA (2018) Microplastics in soils: assessment, analytics and risks. Environ Chem 16:18–30. https://doi.org/10.1071/EN18150

    CAS  Article  Google Scholar 

  39. Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V (2018) Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 643:1644–1651. https://doi.org/10.1016/j.scitotenv.2018.08.102

    CAS  Article  Google Scholar 

  40. Prata JC, da Costa JP, Duarte AC, Rocha-Santos TA (2019) Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends Anal Chem 110:150–159. https://doi.org/10.1016/j.trac.2018.10.029

    CAS  Article  Google Scholar 

  41. Primpke S, Dias P, Gerdts G (2019) Automated identification and quantification of microfibres and microplastics. Anal Methods 11:2138–2147. https://doi.org/10.1039/C9AY00126C

    CAS  Article  Google Scholar 

  42. Primpke S, Christiansen SH, Cowger W, de Frond H, Deshpande A, Fischer M, Holland E, Meyns M, O'Donnell BA, Ossmann B, Pittroff M, Sarau G, Scholz-Böttcher BM, Wiggin K (2020) Critical assessment of analytical methods for the harmonized and cost efficient analysis of microplastics. Appl Spectrosc:1–35. https://doi.org/10.1177/0003702820921465

  43. Renner G, Schmidt TC, Schram J (2018) Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose? Curr Opin Environ Sci Health 1:55–61. https://doi.org/10.1016/j.coesh.2017.11.001

    Article  Google Scholar 

  44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    CAS  Article  Google Scholar 

  45. Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011

    CAS  Article  Google Scholar 

  46. Stock F, Kochleus C, Bänsch-Baltruschat B, Brennholt N, Reifferscheid G (2019) Sampling techniques and preparation methods for microplastic analyses in the aquatic environment – a review. TrAC Trends Anal Chem 113:84–92. https://doi.org/10.1016/j.trac.2019.01.014

    CAS  Article  Google Scholar 

  47. Strand J, Feld L, Murphy F, Mackevica A, Hartmann NB (2018) Analysis of microplastic particles in Danish drinking water: scientific report no. 291. Aarhus University, DCE – Danish Centre for Environment and Energy

  48. Talvitie J, Heinonen M, Pääkkönen J-P, Vahtera E, Mikola A, Setälä O, Vahala R (2015) Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal gulf of Finland, Baltic Sea. Water Sci Technol 72:1495–1504. https://doi.org/10.2166/wst.2015.360

    CAS  Article  Google Scholar 

  49. Tamminga M, Stoewer S-C, Fischer EK (2019) On the representativeness of pump water samples versus manta sampling in microplastic analysis. Environ Pollut 254:112970. https://doi.org/10.1016/j.envpol.2019.112970

    CAS  Article  Google Scholar 

  50. Tong H, Jiang Q, Hu X, Zhong X (2020) Occurrence and identification of microplastics in tap water from China. Chemosphere 252:126493. https://doi.org/10.1016/j.chemosphere.2020.126493

    CAS  Article  Google Scholar 

  51. Triebskorn R, Braunbeck T, Grummt T, Hanslik L, Huppertsberg S, Jekel M, Knepper TP, Krais S, Müller YK, Pittroff M, Ruhl AS, Schmieg H, Schür C, Strobel C, Wagner M, Zumbülte N, Köhler H-R (2019) Relevance of nano- and microplastics for freshwater ecosystems: a critical review. TrAC Trends Anal Chem 110:375–392. https://doi.org/10.1016/j.trac.2018.11.023

    CAS  Article  Google Scholar 

  52. Uhl W, Eftekhardadkhah M, Svendsen C (2018) Mapping microplastic in Norwegian drinking water: report 241/2018. Norwegian Water, Norsk Vann, Norway

    Google Scholar 

  53. Uurasjärvi E, Hartikainen S, Setälä O, Lehtiniemi M, Koistinen A (2020) Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake. Water Environ Res 92:149–156. https://doi.org/10.1002/wer.1229

    CAS  Article  Google Scholar 

  54. van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR (2015) Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17. https://doi.org/10.1016/j.marenvres.2015.06.007

    CAS  Article  Google Scholar 

  55. Welle F, Franz R (2018) Microplastic in bottled natural mineral water – literature review and considerations on exposure and risk assessment. Food Additives & Contaminants: Part A 35:2482–2492. https://doi.org/10.1080/19440049.2018.1543957

    CAS  Article  Google Scholar 

  56. Winkler A, Santo N, Ortenzi MA, Bolzoni E, Bacchetta R, Tremolada P (2019) Does mechanical stress cause microplastic release from plastic water bottles? Water Res 166:115082. https://doi.org/10.1016/j.watres.2019.115082

    CAS  Article  Google Scholar 

  57. Witzig CS, Földi C, Wörle K, Habermehl P, Pittroff M, Müller YK, Lauschke T, Fiener P, Dierkes G, Freier KP, Zumbülte N (2020) When good intentions go bad—false positive microplastic detection caused by disposable gloves. Environ Sci Technol 54:12164–12172. https://doi.org/10.1021/acs.est.0c03742

    CAS  Article  Google Scholar 

  58. Wolff S, Kerpen J, Prediger J, Barkmann L, Müller L (2019) Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water research X:100014. https://doi.org/10.1016/j.wroa.2018.100014

Download references

Acknowledgments

The authors thank the German Federal Ministry for Education and Research for funding the project “MiWa—Microplastic in the water cycle” (grant number code: 02WRS1378F) as well as the operators of the waterworks for the possibility of sampling drinking water.

Funding

The research was co-funded by the German Federal Ministry for Education (project “MiWa—Microplastic in the water cycle”, grant number code: 02WRS1378F).

Author information

Affiliations

Authors

Contributions

MP conceived and wrote the manuscript with text contribution by YM, figure contributions by CW, and structuring by MS and NZ. FS had the idea of using a cascade for microplastic sampling, while implementation and development of the cascade were performed by MP. MP and NZ planned and performed the validation of the cascade. MP conducted most of the lab work and data evaluation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nicole Zumbülte.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Roland Peter Kallenborn

Supplementary Information

ESM 1

(DOCX 1.26 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pittroff, M., Müller, Y.K., Witzig, C.S. et al. Microplastic analysis in drinking water based on fractionated filtration sampling and Raman microspectroscopy. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12467-y

Download citation

Keywords

  • Microplastics
  • Microplastic analysis
  • Raman microspectroscopy
  • Sampling
  • Fractionated filtration
  • Filter cascade
  • Process blank
  • Drinking water