Chronic ciprofloxacin and atrazine co-exposure aggravates locomotor and exploratory deficits in non-target detritivore speckled cockroach (Nauphoeta cinerea)

Abstract

The global detection of ciprofloxacin and atrazine in soil is linked to intensive anthropogenic activities in agriculture and inadvertent discharge of industrial wastes to the environment. Nauphoeta cinerea is a terrestrial insect with cosmopolitan distribution and great environmental function. The current study probed the neurobehavioral and cellular responses of N. cinerea singly and jointly exposed to atrazine (1.0 and 0.5 μg g−1 feed) and ciprofloxacin (0.5 and 0.25 μg g−1 feed) for 63 days. Results demonstrated that the reductions in the body rotation, maximum speed, turn angle, path efficiency, distance traveled, episodes, and time of mobility induced by atrazine or ciprofloxacin per se was exacerbated in the co-exposure group. The altered exploratory and locomotor in insects singly and jointly exposed to ciprofloxacin and atrazine were verified by track plots and heat maps. Furthermore, we observed a decrease in acetylcholinesterase and anti-oxidative enzyme activities with concomitant elevation in the levels of lipid peroxidation, nitric oxide, and reactive oxygen and nitrogen species were significantly intensified in the midgut, hemolymph, and head of insects co-exposed to ciprofloxacin and atrazine. In conclusion, exposure to binary mixtures of ciprofloxacin and atrazine elicited greater locomotor and exploratory deficits than upon exposure to the individual compound by inhibiting acetylcholinesterase activity and induction of oxido-inflammatory stress responses in the insects. N. cinerea may be a usable model insect for checking contaminants of ecological risks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The original data and materials of the current study are available with the corresponding author and would be made available on justifiable request.

References

  1. Abdulelah SA, Crile KG, Almouseli A, Awali S, Tutwiler AY, Tien EA, Manzo VJ, Hadeed MN, Belanger RM (2020) Environmentally relevant atrazine exposures cause DNA damage in cells of the lateral antennules of crayfish (Faxonius virilis). Chemosphere 239:124786. https://doi.org/10.1016/j.chemosphere.2019.124786

  2. Adedara IA, Rosemberg DB, Souza DO, Kamdem JP, Farombi EO, Aschner M, Rocha JBT (2015) Biochemical and behavioral deficits in lobster cockroach Nauphoeta cinerea model of methylmercury exposure. Toxicol Res 4:442–451

    CAS  Article  Google Scholar 

  3. Adedara IA, Rosemberg DB, de Souza D, Farombi EO, Aschner M, Souza DO, Rocha JBT (2016) Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos. Pestic Biochem Physiol 130:22–30

    CAS  Article  Google Scholar 

  4. Adedara IA, Abolaji AO, Awogbindin IO, Farombi EO (2017) Suppression of the brain-pituitary-testicular axis function following acute arsenic and manganese co-exposure and withdrawal in rats. J Trace Elem Med Biol 39:21–29

    CAS  Article  Google Scholar 

  5. Adedara IA, Awogbindin IO, Owoeye O, Maduako IC, Ajeleti AO, Owumi SE, Patlolla AK, Farombi EO (2020b) Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats. Psychopharmacology 237:1027–1040

    Article  CAS  Google Scholar 

  6. Adedara IA, Ajayi BO, Afolabi BA, Awogbindin IO, Rocha JBT, Farombi EO (2021) Toxicological outcome of exposure to psychoactive drugs carbamazepine and diazepam on non-target insect Nauphoeta cinerea. Chemosphere 264:128449

    CAS  Article  Google Scholar 

  7. Adedara IA, Awogbindin IO, Afolabi BA, Ajayi BO, Rocha JBT, Farombi EO (2020a) Hazardous impact of diclofenac exposure on the behavior and antioxidant defense system in Nauphoeta cinerea. Environ Pollut 265:115053. https://doi.org/10.1016/j.envpol.2020.115053

    CAS  Article  Google Scholar 

  8. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

  9. Afolabi BA, Olagoke OC, Souza DO, Aschner M, Rocha JBT, Segatto ALA (2020) Modified expression of antioxidant genes in lobster cockroach, Nauphoeta cinerea exposed to methylmercury and monosodium glutamate. Chem Biol Interact 318:108969. https://doi.org/10.1016/j.cbi.2020.108969

    CAS  Article  Google Scholar 

  10. Arun S, Kumar RM, Ruppa J, Mukhopadhyay M, Ilango K, Chakraborty P (2020) Occurrence, sources and risk assessment of fluoroquinolones in dumpsite soil and sewage sludge from Chennai, India. Environ Toxicol Pharmacol 79:103410. https://doi.org/10.1016/j.etap.2020.103410

  11. Asouzu Johnson J, Ihunwo A, Chimuka L, Mbajiorgu EF (2019) Cardiotoxicity in African clawed frog (Xenopus laevis) sub-chronically exposed to environmentally relevant atrazine concentrations: implications for species survival. Aquat Toxicol 213:105218

    CAS  Article  Google Scholar 

  12. Bell AT, Niven JE (2016) Strength of forelimb lateralization predicts motor errors in an insect. Biol Lett 12:20160547

    Article  Google Scholar 

  13. Bell WJ, Roth LM, Nalepa CA (2007) Cockroaches: ecology, behavior, and natural history. The Johns Hopkins University Press

  14. Blahova J, Dobsikova R, Enevova V, Modra H, Plhalova L, Hostovsky M, Marsalek P, Mares J, Skoric M, Vecerek V, Svobodova Z (2020) Comprehensive fitness evaluation of common carp (Cyprinus carpio L.) after twelve weeks of atrazine exposure. Sci Total Environ 718:135059. https://doi.org/10.1016/j.scitotenv.2019.135059

  15. Blankenburg S, Balfanz S, Hayashi Y, Shigenobu S, Miura T, Baumann O, Baumann A, Blenau W (2015) Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology 88:134–144

    CAS  Article  Google Scholar 

  16. Bondarczuk K, Markowicz A, Piotrowska-Seget Z (2016) The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ Int 87:49–55

    CAS  Article  Google Scholar 

  17. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  Google Scholar 

  18. Campero M, Ollevier F, Stoks R (2007) Ecological relevance and sensitivity depending on the exposure time for two biomarkers. Environ Toxicol 22:572–581

    CAS  Article  Google Scholar 

  19. Cheng Y, Zhu L, Song W, Jiang C, Li B, Du Z, Wang J, Wang J, Li D, Zhang K (2020) Combined effects of mulch film-derived microplastics and atrazine on oxidative stress and gene expression in earthworm (Eisenia fetida). Sci Total Environ 746:141280. https://doi.org/10.1016/j.scitotenv.2020.141280

    CAS  Article  Google Scholar 

  20. St Clair CR, Fuller CA (2018) Atrazine exposure influences immunity in the blue dasher dragonfly, Pachydiplax longipennis (Odonata: Libellulidae). J Insect Sci 18:12. https://doi.org/10.1093/jisesa/iey095

    CAS  Article  Google Scholar 

  21. Dou R, Sun J, Deng F, Wang P, Zhou H, Wei Z, Chen M, He Z, Lai M, Ye T, Zhu L (2020) Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Sci Total Environ 701:134916

    CAS  Article  Google Scholar 

  22. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapidcolorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Article  Google Scholar 

  23. García-Espiñeira M, Tejeda-Benitez L, Olivero-Verbel J (2018) Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans. Ecotoxicol Environ Saf 156:216–222

    Article  CAS  Google Scholar 

  24. Gerard C, Poullain V (2005) Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors. Environ Pollut 138:28–33

    CAS  Article  Google Scholar 

  25. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  Article  Google Scholar 

  26. Griboff J, Morales D, Bertrand L, Bonansea RI, Monferrán MV, Asis R, Wunderlin DA, Amé MV (2014) Oxidative stress response induced by atrazine in Palaemonetes argentinus: the protective effect of vitamin E. Ecotoxicol Environ Saf 108:1–8

    CAS  Article  Google Scholar 

  27. Groten JP, Feron VJ, Sühnel J (2001) Toxicology of simple and complex mixtures. Trends Pharmacol Sci 22:316–322

    CAS  Article  Google Scholar 

  28. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

  29. Harris WE, Moore PJ (2005) Sperm competition and male ejaculate investment in Nauphoeta cinerea: effects of social environment during development. J Evol Biol 18:474–480

    CAS  Article  Google Scholar 

  30. Ilgin S, Can OD, Atli O, Ucel UI, Sener E, Guven I (2015) Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicol Mech Methods 25:374–381

  31. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    CAS  Article  Google Scholar 

  32. Komtchou S, Dirany A, Drogui P, Robert D, Lafrance P (2017) Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes. Water Res 125:91–103

    CAS  Article  Google Scholar 

  33. Li C, Chen J, Wang J, Ma Z, Han P, Luan Y, Lu A (2015) Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci Total Environ 521–522:101–107

  34. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224

    CAS  Article  Google Scholar 

  35. Liu Z, Wang Y, Zhu Z, Yang E, Feng X, Fu Z, Jin Y (2016) Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere 148:163–170

    CAS  Article  Google Scholar 

  36. Liu J, Li X, Wang X (2019) Toxicological effects of ciprofloxacin exposure to Drosophila melanogaster. Chemosphere 237:124542. https://doi.org/10.1016/j.chemosphere.2019.124542

    CAS  Article  Google Scholar 

  37. Malloy CA, Somasundaram E, Omar A, Bhutto U, Medley M, Dzubuk N, Cooper RL (2019) Pharmacological identification of cholinergic receptor subtypes: modulation of locomotion and neural circuit excitability in Drosophila larvae. Neuroscience 411:47–64

    CAS  Article  Google Scholar 

  38. Marcus SR, Fiumera AC (2016) Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. J Insect Physiol 91–92:18–25

    Article  CAS  Google Scholar 

  39. Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Article  Google Scholar 

  40. Mrdaković M, Ilijin L, Vlahović M, Filipović A, Grčić A, Todorović D, Perić-Mataruga V (2019) Effects of dietary fluoranthene on nymphs of Blaptica dubia S. (Blattodea: Blaberidae). Environ Sci Pollut Res Int 26:6216–6222

    Article  CAS  Google Scholar 

  41. Müller U (1997) The nitric oxide system in insects. Prog Neurobiol 51:363–381

    Article  Google Scholar 

  42. Nogueira AF, Pinto G, Correia B, Nunes B (2019) Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs. Environ Toxicol 34:1177–1190

    CAS  Article  Google Scholar 

  43. Östman M, Lindberg RH, Fick J, Björn E, Tysklind M (2017) Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res 115:318–328

  44. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607

    CAS  Article  Google Scholar 

  45. Rodrigues NR, Nunes ME, Silva DG, Zemolin AP, Meinerz DF, Cruz LC, Pereira AB, Rocha JB, Posser T, Franco JL (2013) Is the lobster cockroach Nauphoeta cinerea a valuable model for evaluating mercury induced oxidative stress? Chemosphere 92:1177–1182

    CAS  Article  Google Scholar 

  46. Rodriguez VM, Mendoza-Trejo MS, Hernandez-Plata I, Giordano M (2017) Behavioral effects and neuroanatomical targets of acute atrazine exposure in the male Sprague-Dawley rat. Neurotoxicology 58:161–170

    CAS  Article  Google Scholar 

  47. Romano D, Benelli G, Kavallieratos NG, Athanassiou CG, Canale A, Stefanini C (2020) Beetle-robot hybrid interaction: sex, lateralization and mating experience modulate behavioural responses to robotic cues in the larger grain borer Prostephanus truncatus (Horn). Biol Cybernetics 114:473–483

    Article  Google Scholar 

  48. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  Article  Google Scholar 

  49. Saalfeld GQ, Varela Junior AS, Castro T, Pereira FA, Gheller SMM, da Silva AC, Corcini CD, da Rosa CE, Colares EP (2018) Low atrazine dosages reduce sperm quality of Calomys laucha mice. Environ Sci Pollut Res Int 25:2924–2931

    CAS  Article  Google Scholar 

  50. Sadekuzzaman M, Stanley D, Kim Y (2018) Nitric oxide mediates insect cellular immunity via phospholipase A2 activation. J Innate Immun 10:70–81

    CAS  Article  Google Scholar 

  51. Semren TŽ, Žunec S, Pizent A (2018) Oxidative stress in triazine pesticide toxicity: a review of the main biomarker findings. Arh Hig Rada Toksikol 69:109–125

    CAS  Article  Google Scholar 

  52. Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5:293–302

    CAS  Article  Google Scholar 

  53. Sisay M, Weldegebreal F, Tesfa T, Ataro Z, Marami D, Mitiku H, Motbaynor B, Teklemariam Z (2018) Resistance profile of clinically relevant bacterial isolates against fluoroquinolone in Ethiopia: a systematic review and meta-analysis. BMC Pharmacol Toxicol 19:86. https://doi.org/10.1186/s40360-018-0274-6

    CAS  Article  Google Scholar 

  54. Song Y, Zhu LS, Xie H, Wang J, Wang JH, Liu W, Dong XL (2009) Effects of atrazine on DNA damage and antioxidative enzymes in Vicia faba. Environ Toxicol Chem 28:1059–1062

    CAS  Article  Google Scholar 

  55. Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162

    CAS  Article  Google Scholar 

  56. Stankiewicz M, Dąbrowski M, de Lima ME., 2012. Nervous system of Periplaneta americana cockroach as a model in toxinological studies: a short historical and actual view. J Toxicol 2012:143740. https://doi.org/10.1155/2012/143740, 1, 11

  57. Stara A, Kouba A, Velisek J (2018) Biochemical and histological effects of sub-chronic exposure to atrazine in crayfish Cherax destructor. Chem Biol Interact 291:95–102

    CAS  Article  Google Scholar 

  58. Stürmer GD, de Freitas TC, Heberle Mde A, de Assis DR, Vinadé L, Pereira AB, Franco JL, Dal Belo CA (2014) Modulation of dopaminergic neurotransmission induced by sublethal doses of the organophosphate trichlorfon in cockroaches. Ecotoxicol Environ Saf 109:56–62

    Article  CAS  Google Scholar 

  59. Thiel R, Metzner S, Gericke C, Rahm U, Stahlmann R (2001) Effects of fluoroquinolones on the locomotor activity in rats. Arch Toxicol 75:36–41

    CAS  Article  Google Scholar 

  60. van Koppen CJ, Kaiser B (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98:197–220

    Article  CAS  Google Scholar 

  61. Waczuk EP, Wagner R, Klein B, da Rocha JBT, Ardisson-Araújo DMP, Barbosa NV (2019) Assessing the toxicant effect of spontaneously volatilized 4-vinylcyclohexane exposure in nymphs of the lobster cockroach Nauphoeta cinerea. Environ Toxicol Pharmacol 72:103264

    CAS  Article  Google Scholar 

  62. Wang S, Zhang Q, Zheng S, Chen M, Zhao F, Xu S (2019) Atrazine exposure triggers common carp neutrophil apoptosis via the CYP450s/ROS pathway. Fish Shellfish Immunol 84:551–557

    CAS  Article  Google Scholar 

  63. Wei R, He T, Zhang S, Zhu L, Shang B, Li Z, Wang R (2019) Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. Chemosphere 215:234–240

    CAS  Article  Google Scholar 

  64. Yang X, Li Y, Wang X (2020) Effects of ciprofloxacin exposure on the earthworm Eisenia fetida. Environ Pollut 262:114287. https://doi.org/10.1016/j.envpol.2020.114287

    CAS  Article  Google Scholar 

  65. Zhang H, Zhou Y, Huang Y, Wu L, Liu X, Luo Y (2016) Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere 152:229–237

    CAS  Article  Google Scholar 

  66. Zhu LS, Shao B, Song Y, Xie H, Wang J, Wang JH, Liu W, Hou XX (2011) DNA damage and effects on antioxidative enzymes in zebra fish (Danio rerio) induced by atrazine. Toxicol Mech Methods 21:31–36

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

a) Isaac A. Adedara: conceptualization; supervision; methodology; writing - original draft preparation, review, and editing.

b) Umin-Awaji S. Godswill: methodology; data curation; software.

c) Miriam A. Mike: methodology; data curation; software.

d) Blessing A. Afolabi: conceptualization; methodology; software, writing - original draft preparation.

e) Chizoba C. Amorha: methodology; data curation; software.

f) Joseph Sule: methodology; data curation; software.

g) Joao B. T. Rocha: conceptualization; validation; writing – review and editing.

h) Ebenezer O. Farombi: conceptualization; validation; writing – review and editing.

Corresponding author

Correspondence to Isaac A. Adedara.

Ethics declarations

Ethics approval

Not applicable. N. cinerea is an invertebrate model organism (insect) which requires no ethics approval.

Consent to participate

Not applicable. This is an animal study which does not require consent to participate.

Consent to publish

The content of this manuscript is original. It does not contain data and pictures of any person. Hence, no consent from any person or organization is required to publish it.

Competing interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Giovanni Benelli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adedara, I.A., Godswill, UA.S., Mike, M.A. et al. Chronic ciprofloxacin and atrazine co-exposure aggravates locomotor and exploratory deficits in non-target detritivore speckled cockroach (Nauphoeta cinerea). Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12460-5

Download citation

Keywords

  • Anthropogenic activities
  • Chemical mixtures
  • Insects
  • Neurobehavior
  • Acetylcholinesterase
  • Oxido-inflammatory stress