Assessment of actinobacteria use in the elimination of multidrug-resistant bacteria of Ibn Tofail hospital wastewater (Marrakesh, Morocco): a chemometric data analysis approach

Abstract

The efficiency of the treatment of hospital wastewater by actinobacteria was investigated using two chemometric data analysis methods. Six strains of multi-resistant bacteria isolated from Marrakesh hospital wastewater and four strains of antagonistic actinobacteria isolated from Moroccan marine environment were characterized by fatty acids released as methyl esters by thermochemolysis-GC/MS. The hierarchical cluster analysis (HCA) and the principal component analysis (PCA) were used to correlate fatty acids (FA) distributions within strains. HCA allowed to discriminate between bacteria and actinobacteria. A lower Euclidean distance is noted for bacteria. With PCA, linear and branched-chained FAs correlated with bacteria whereas mono unsaturated FAs correlated more specifically with Gram (−) bacteria. Terminally branched-chained FAs correlated most likely with actinobacteria. A co-culture of actinobacteria and bacteria monitored during 15 days demonstrated the efficiency of the biological treatment for 2 of the 4 studied actinobacteria. The effect is more important on Gram-negative bacteria. Antagonistic actinobacteria seem to be poorly efficient against Gram-positive bacteria.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets used and analyzed during the current study are available from the corresponding authors, upon request.

References

  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  Article  Google Scholar 

  2. Andersen R, Grasset L, Thormann MN, Rochefort L, Francez AJ (2010) Changes in microbial community structure and function following Sphagnum peatland restoration. Soil Biol Biochem 42(2):291–301

    CAS  Article  Google Scholar 

  3. El Fels L, Lemee L, Ambles A, Hafidi M (2016) Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique. Environ Sci Pollut Res 23(16):16857–16864

    Article  Google Scholar 

  4. El Ouaqoudi FZ, Meddich A, Lemée L, Amblès A, Hafidi M (2018) Assessment of compost-derived humic acids structure from ligno-cellulose waste by TMAH-thermochemolysis. Waste Biomass Valor 1-12

  5. Fars S, Oufdou K, Nejmeddine A, Hassani L, Melloul AA, Bousselhaj K, Amahmid O, Bouhoum K, Lakmichi H, Mezrioui N (2005) Antibiotic resistance and survival of faecal coliforms in activated sludge system in a semi-arid region (Beni Mellal, Morocco). World J Microbiol Biotechnol 21(4):493–500

    CAS  Article  Google Scholar 

  6. Findlay, R. H., 1996. The use of phospholipid fatty acids to determine microbial community structure. In Molecular Microbial Ecology Manual (pp. 77-93). Springer, Dordrecht.

  7. Galler, H., Feierl, G., Petternel, C., Reinthaler, F.F., Haas, D., Habib, J., Kittinger, C., Luxner, J. and Zarfel, G., 2018. Multiresistant bacteria isolated from activated sludge in Austria. Int. J. Environ. Res. Public Health 15(3), p.479.

  8. Geladi P, Manley M, Lestander T (2003) Scatter plotting in multivariate data analysis. J Chemom 17(8-9):503–511

    CAS  Article  Google Scholar 

  9. Gil MV, Calvo LF, Blanco D, Sánchez ME (2008) Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresour Technol 99(13):5763–5772

    CAS  Article  Google Scholar 

  10. Grasset L, Rovira P, Amblès A (2009) TMAH-preparative thermochemolysis for the characterization of organic matter in densimetric fractions of a Mediterranean forest soil. J Anal Appl Pyrolysis 85(1-2):435–441

    CAS  Article  Google Scholar 

  11. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 368(9538):874–885

    Article  Google Scholar 

  12. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31(3):147–158

    CAS  Article  Google Scholar 

  13. Ibrahimi M, Korichi W, Hafidi M, Lemee L, Ouhdouch Y, Loqman S (2020) Marine actinobacteria: screening for predation leads to the discovery of potential new drugs against multidrug-resistant bacteria. Antibiotics 9(2):91

    Article  Google Scholar 

  14. Ibrahimi M, Korichi W, Loqman S, Hafidi M, Ouhdouch Y, Lemee L (2020) Thermochemolysis–GC-MS as a tool for chemotaxonomy and predation monitoring of a predatory actinobacteria against a multidrug resistant bacteria. J Anal Appl Pyrolysis 145:104740

    CAS  Article  Google Scholar 

  15. Jørgensen PE, Eriksen T, Jensen BK (1992) Estimation of viable biomass in wastewater and activated sludge by determination of ATP, oxygen utilization rate and FDA hydrolysis. Water Res 26(11):1495–1501

    Article  Google Scholar 

  16. Khan FA, Hellmark B, Ehricht R, Söderquist B, Jass J (2018) Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Eur J Clin Microbiol Infect Dis 37(12):2241–2251

    Article  Google Scholar 

  17. Khan FA, Söderquist B, Jass J (2019) Prevalence and diversity of antibiotic resistance genes in Swedish aquatic environments impacted by household and hospital wastewater. Front Microbiol 10:688

    Article  Google Scholar 

  18. Madonna AJ, Voorhees KJ, Hadfield TL (2001) Rapid detection of taxonomically important fatty acid methyl ester and steroid biomarkers using in situ thermal hydrolysis/methylation mass spectrometry (THM-MS): implications for bioaerosol detection. J Anal Appl Pyrolysis 61(1-2):65–89

    CAS  Article  Google Scholar 

  19. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17(10):1791–1798

    CAS  Article  Google Scholar 

  20. Nybroe O, Jørgensen PE, Henze M (1992) Enzyme activities in waste water and activated sludge. Water Res 26(5):579–584

    CAS  Article  Google Scholar 

  21. Ogunmwonyi IH, Mazomba N, Mabinya L, Ngwenya E, Green E, Akinpelu DA, Okoh AI (2010) Studies on the culturable marine actinomycetes isolated from the Nahoon beach in the Eastern Cape Province of South Africa. Afr J Microbiol Res 4(21):2223–2230

    Google Scholar 

  22. Parker JH, Smith GA, Fredrickson HL, Vestal JR, White DC (1982) Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments. J Appl Environ Microbiol 44(5):1170–1177

    CAS  Article  Google Scholar 

  23. Parkes RJ, Dowling NJE, White DC, Herbert RA, Gibson GR (1993) Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol Lett 102(3-4):235–250

    CAS  Article  Google Scholar 

  24. Ravikumar S, Inbaneson SJ, Uthiraselvam M, Priya SR, Ramu A, Banerjee MB (2011) Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J Pharm Res 4(1):294–296

    Google Scholar 

  25. Thenmozhi M, Kannabiran K (2011) Anti-Aspergillus activity of Streptomyces sp. VITSTK7 isolated from Bay of Bengal coast of Puducherry. Indian J Nat Environ Sci 2(2):1–8

    Google Scholar 

  26. Valli S, Suvathi SS, Aysha OS, Nirmala P, Vinoth KP, Reena A (2012) Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pac J Trop Biomed 2(6):469–473

    CAS  Article  Google Scholar 

  27. Van de Meent D, De Leeuw JW, Schenck PA, Windig W, Haverkamp J (1982) Quantitative analysis of biopolymer mixtures by pyrolysis-mass spectrometry. J Anal Appl Pyrolysis 4(2):133–142

    Article  Google Scholar 

  28. Wang Q, Wang P, Yang Q (2018) Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci Total Environ 621:990–999

    CAS  Article  Google Scholar 

  29. White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol 17(3-4):185–196

    CAS  Google Scholar 

  30. Wilkinson, S.G., Ratledge, C., 1988. Microbial lipids, vol. 1. Academic Press: San Diego, 299.

  31. Wilson G, McCabe D (2007) The use of antibiotic-containing agars for the isolation of extended-spectrum β-lactamase-producing organisms in intensive care units. Clin Microbiol Infect 13(4):451–453

    CAS  Article  Google Scholar 

  32. Younes K, Grasset L (2020) The application of DFRC method for the analysis of carbohydrates in a peat bog: validation and comparison with conventional chemical and thermochemical degradation techniques. Chem Geol 119644

  33. Younes K, Laduranty J, Descostes M, Grasset L (2017) Molecular biomarkers study of an ombrotrophic peatland impacted by an anthropogenic clay deposit. Org Geochem 105:20–32

    CAS  Article  Google Scholar 

  34. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29(2):111–129

    CAS  Article  Google Scholar 

  35. Zelles L, Bai QY, Rackwitz R, Chadwick D, Beese F (1995) Determination of phospholipid-and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils. Biol Fertil Soils 19(2-3):115–123

    CAS  Article  Google Scholar 

  36. Zhang, J., Zhang, L., Wang, M., Brostaux, Y., Yin, C., Dogot, T., 2020. Identifying key pathways in manure and sewage management of dairy farming based on a quantitative typology: A case study in China. Sci. Total Environ. 143326.

Download references

Funding

This project was financially supported by the CAMPUS FRANCE (PHC TOUBKAL 2017 (French-Morocco bilateral program, Grant Number: 12345AB)).

Author information

Affiliations

Authors

Contributions

WK: strain isolation and performing the molecular analysis. MI: assisting in strain isolation. SL: assisting in strain isolation and reviewing the article. YO: assisting in strain isolation and reviewing the article. KY: interpreting and discussing results and writing the manuscript. LL: assisting in the molecular analysis, reviewing the article, and coordinating the project.

Corresponding authors

Correspondence to Khaled Younes or Laurent Lemée.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Diane Purchase

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korichi, W., Ibrahimi, M., Loqman, S. et al. Assessment of actinobacteria use in the elimination of multidrug-resistant bacteria of Ibn Tofail hospital wastewater (Marrakesh, Morocco): a chemometric data analysis approach. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12445-4

Download citation

Keywords

  • Actinobacteria
  • Multi-resistant bacteria
  • Hospital wastewater
  • Pyrolysis
  • Chemometric data analysis