Occupational exposure of rural workers to pesticides in a vegetable-producing region in Brazil

Abstract

The health of family farmers is at risk due to occupational exposure to pesticides. The aims of the current study were to investigate the level of farmers’ perception of risks associated with pesticide use and to assess their health condition based on biochemical and immunological tests. Family farmers living in a vegetable-producing region in Southern Brazil were selected to participate in the study. More than 70% of the family farmers were often exposed to more than one type of pesticides; 41.2% were intensively using several pesticides for more than one decade and 74.4% were not using personal protective equipment (PPE) at the time of pesticide handling due to low perception of the risks posed by these chemicals. Enzymatic analysis performed in participants’ blood samples showed changes in catalase (CAT) and glutathione reductase (GR) activity, in lipid peroxidation (TBARS) and carbonylated protein levels, as well as in chemoattractant (IL-8) and anti-inflammatory (IL-10) interleukin expression. Low perception of health-related risks posed by pesticides can be attributed to factors such as low schooling and lack of information, which put farmers’ health at risk, as evidenced by blood biochemical and immunological changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6

Data Availability

Not applicable.

References

  1. Agência Nacional de Vigilância Sanitária (National Health Surveillance Agency) - ANVISA (2020) Painel de Monografias de Agrotóxicos. http://portalanalitico.anvisa.gov.br/monografias-de-agrotoxicos. Accessed Dec 2020 (in Portuguese)

  2. Bagheri A, Emami N, Allahyari MS, Damalas CA (2018) Pesticide handling practices, health risks, and determinants of safety behavior among Iranian apple farmers. Hum Ecol Risk Assess 24:1–15

    Article  Google Scholar 

  3. Baharuddin MRB, Sahid IB, Noor MABM, Sulaiman N, Othman F (2011) Pesticide risk assessment: A study on inhalation and dermal exposure to 2,4-D and paraquat among Malaysian paddy farmers. J Environ Sci Health B 46:600–607. https://doi.org/10.1080/03601234.2011.589309

    CAS  Article  Google Scholar 

  4. Benedetti D, Alderete BL, Souza CTS, Dias JF, Niekraszewicz L, Cappetta M, Martínez-López W, Silva J (2018) DNA damage and epigenetic alteration in soybean farmers exposed to complex mixture of pesticides. Mutagenesis 33:87–95. https://doi.org/10.1093/mutage/gex035

    CAS  Article  Google Scholar 

  5. Bittar A, Chung JM, Jun J, Wang J, Leem JW, Chung JM (2017) Reactive oxygen species affect spinal cell type-specific synaptic plasticity in a model of neuropathic pain. Pain 158:2137–2146. https://doi.org/10.1097/j.pain.0000000000001014

    CAS  Article  Google Scholar 

  6. Bondori A, Bagheri A, Sookhtanlou M, Allahyari MS, Damalas CA (2018) Pesticide use in cereal production in Moghan Plain, Iran: risk knowledge and farmers’ attitudes. Crop Prot 110:117–124. https://doi.org/10.1016/j.cropro.2018.04.009

    Article  Google Scholar 

  7. Brand RM, McMahon L, Jendrzejewski JL, Charron AR (2007) Transdermal absorption of the herbicide 2,4-dichlorophenoxyacetic acid is enhanced by both ethanol consumption and sunscreen application. Food Chem Toxicol 45:93–97. https://doi.org/10.1016/j.fct.2006.08.005

    CAS  Article  Google Scholar 

  8. Brazil (2017a). Ministério da Agricultura. http://www.mda.gov.br/sitemda/noticias/o-que-é-agricultura-familiar (in Portuguese)

  9. Brazil (2017b). Ministério da Saúde. Técnicas para coleta de sangue. http://www.bvsms.saude.gov.br/bvs/publicacoes/0108tecnicas_sangue.pdf (in Portuguese)

  10. Campos E, Silva VSP, Mello MSC, Otero UB (2016) Exposure to pesticides and mental disorders in a rural population of Southern Brazil. Neurotoxicology 56:7–16. https://doi.org/10.1016/j.neuro.2016.06.002

    CAS  Article  Google Scholar 

  11. Cardoso TPA, Viturino da Silva JW, Kishishita J, Bedor CNG, Bedor DCG, Pereira de Santana D, Leal BL (2020) Pesticide dermal absorption: case study x in vitro study. Environ Toxicol Pharmacol 75:103313. https://doi.org/10.1016/j.etap.2019.103313

    CAS  Article  Google Scholar 

  12. Cattelan MDP, Maurer P, Garcia F, Berro LF, Machado MM, Manfredini V, Piccoli JCE (2018) Occupational exposure to pesticides in family agriculture and the oxidative, biochemical and hematological profile in this agricultural model. Life Sci 203:177–183. https://doi.org/10.1016/j.lfs.2018.04.038

    CAS  Article  Google Scholar 

  13. Cecconi S, Paro R, Rossi G, Macchiarelli G (2007) The effects of the endocrine disruptors dithiocarbamates on the mammalian ovary with particular regard to mancozeb. Curr Pharm Des 13:2989–3004. https://doi.org/10.2174/138161207782110516

    CAS  Article  Google Scholar 

  14. Corsini E, Codecà I, Mangiaratti S, Birindelli S, Minoia C, Turci R, Viviani B, Facchi A, Vitelli N, Lucchi L, Galli CL, Marinovich M, Colosio C (2007) Immunomodulatory effects of the herbicide propanil on cytokine production in humans: in vivo and in vitro exposure. Toxicol Appl Pharmacol 208:178–185. https://doi.org/10.1016/j.taap.2007.04.017

    CAS  Article  Google Scholar 

  15. Costa C, Teodoro M, Rugolo CA, Alibrando C, Giambò F, Briguglio G, Fenga C (2020) MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol Rep 7:759–767. https://doi.org/10.1016/j.toxrep.2020.05.003

    CAS  Article  Google Scholar 

  16. Cuenca JB, Tirado N, Barral J, Ali I, Levi M, Stenius U, Berglund M, Dreij K (2019) Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. Sci Total Environ 695:133942. https://doi.org/10.1016/j.scitotenv.2019.133942

    CAS  Article  Google Scholar 

  17. Damalas CA, Abdollahzadeh G (2016) Farmers’ use of personal protective equipment during handling of plant protection products: determinants of implementation. Sci Total Environ 571:730–736

    CAS  Article  Google Scholar 

  18. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    CAS  Article  Google Scholar 

  19. Damalas CA, Khan M (2017) Pesticide use in vegetable crops in Pakistan: insights through an ordered probit model. Crop Prot 99:59–64

    Article  Google Scholar 

  20. Damalas CA, Koutroubas SD (2016) Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics 4:1

    Article  Google Scholar 

  21. Damalas CA, Koutroubas SD, Abdollahzadeh G (2019) Drivers of personal safety in agriculture: a case study with pesticide operators. Agriculture 9:34

    Article  Google Scholar 

  22. Das N, Paul S, Chatterjee D, Banerjee N, Majumder NS, Sarma N, Sau TJ, Basu S, Banerjee S, Majumder P, Bandyopadhyay AK, States JC, Giri AK (2012) Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12:639. https://doi.org/10.1186/1471-2458-12-639

    Article  Google Scholar 

  23. Deschacht N, Winter A (2015) Rural crisis and rural exodus? Local migration dynamics during the crisis of the 1840s in Flanders (Belgium). Explor Econ Hist 56:32–52. https://doi.org/10.1016/j.eeh.2014.11.001

    Article  Google Scholar 

  24. Dutta T, Nayak C, Bhattacharjee S (2019) Acetylcholinesterase, Butyrylcholinesterase and Glutathione S-Transferase enzyme activities and their correlation with genotypic variations based on GST M1 and GST T1 Loci in long term-pesticide-exposed tea garden workers of Sub-Himalayan West Bengal. Toxicol Environ Heal Sci 11:63–72. https://doi.org/10.1007/s13530-019-0389-1

    Article  Google Scholar 

  25. Ellman GL (1959) Tissue Sulfhydryl Groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    CAS  Article  Google Scholar 

  26. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–90. https://doi.org/10.1016/0006-2952(61)90145-9

    CAS  Article  Google Scholar 

  27. Fan L, Niu H, Yang X, Qin W, Bento CPM, Ritsema CJ, Geissen V (2015) Factors affecting farmers’ behaviour in pesticide use: Insights from a field study in northern China. Sci Total Environ 537:360–368. https://doi.org/10.1016/j.scitotenv.2015.07.150

    CAS  Article  Google Scholar 

  28. Faria NMX, Fassa AG, Meucci RD, Fiori NS, Miranda VI (2014) Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 45:347–354. https://doi.org/10.1016/j.neuro.2014.05.002

    CAS  Article  Google Scholar 

  29. Food and Agriculture Organization of the United Nations – FAO (2019). Introducing the UN Decade of Family Farming. http://www.fao.org/family-farming-decade/home/en/. Accessed Oct 2020

  30. Fukuyama T, Kosaka T, Hayashi K, Miyashita K, Tajima Y, Wada K, Nishino R, Ueda H, Harada T (2012) Immunotoxicity in mice induced by short-term exposure to methoxychlor, parathion, or piperonyl butoxide. J Immunotoxicol 10:150–159. https://doi.org/10.3109/1547691X.2012.703252

    CAS  Article  Google Scholar 

  31. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Article  Google Scholar 

  32. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause or consequence? Lancet 344:721–724. https://doi.org/10.1016/s0140-6736(94)92211-x

    CAS  Article  Google Scholar 

  33. Hayat K, Afzal M, Aqueel MA, Ali S, Saeed MF, Qureshi AK, Ullah MI, Khan QM, Naseem MT, Ashfaq U, Damalas CA (2019) Insecticide toxic effects and blood biochemical alterations in occupationally exposed individuals in Punjab, Pakistan. Sci Total Environ 655:102–111. https://doi.org/10.1016/j.scitotenv.2018.11.175

    CAS  Article  Google Scholar 

  34. Hernández AF, Gómez MA, Pérez V, García-Lario JV, Pena G, Gil O, Rodrigo L, Pino G, Pla A (2006) Influence of exposure to pesticides on serum components and enzyme activities of cytotoxicity among intensive agriculture farmers. Environ Res 102:70–76. https://doi.org/10.1016/j.envres.2006.03.002

    CAS  Article  Google Scholar 

  35. Houbraken M, Bauweraerts I, Fevery D, Labeke MCV, Spanoghe P (2016) Pesticide knowledge and practice among horticultural workers in the Lâm Đồng region, Vietnam: a case study of chrysanthemum and strawberries. Sci Total Environ 550:1001–1009. https://doi.org/10.1016/j.scitotenv.2016.01.183

    CAS  Article  Google Scholar 

  36. Infante-Rivard C, Weichenthal S (2007) Pesticides and childhood cancer: an update of Zahm and Ward’s 1998 review. J Toxicol Environ Health B 10:81–99. https://doi.org/10.1080/10937400601034589

    CAS  Article  Google Scholar 

  37. Ishihara K, Hirano T (2002) IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth F R 13:357–368. https://doi.org/10.1016/s1359-6101(02)00027-8

    CAS  Article  Google Scholar 

  38. Jallow MFA, Awadh DG, Albaho MS, Devi VY, Thomas BM (2017) Pesticide risk behaviors and factors influencing pesticide use among farmers in Kuwait. Sci Total Environ 574:490–498. https://doi.org/10.1016/j.scitotenv.2016.09.085

    CAS  Article  Google Scholar 

  39. Jentzsch AM, Bachmann H, Fürst P, Biesalski HK (1996) Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20:251–256. https://doi.org/10.1016/0891-5849(95)02043-8

    CAS  Article  Google Scholar 

  40. Jors E, Hay-Younes J, Condarco MA, Condarco G, Cervantes R, Huici O, Balum J (2013) Is gender a risk factor for pesticide intoxications among farmers in Bolivia? A cross-sectional study. J Agromed 18:132–139. https://doi.org/10.1080/1059924X.2013.767102

    Article  Google Scholar 

  41. Kaur N, Starling AP, Calafat AM, Sjodin A, Clouet-Foraison N, Dolan LM, Imperatore G, Jensen ET, Lawrence JM, Ospina M, Pihoker C, Taylor KW, Turley C, Dabelea D, Jaacks LM (2020) Longitudinal association of biomarkers of pesticide exposure with cardiovascular disease risk factors in youth with diabetes. Environ Res 181:108916. https://doi.org/10.1016/j.envres.2019.108916

    CAS  Article  Google Scholar 

  42. Khan M, Damalas CA (2014) Occupational exposure to pesticides and resultant health problems among cotton farmers of Punjab, Pakistan. Int J Environ Health Res 25:508–521. https://doi.org/10.1080/09603123.2014.980781

    CAS  Article  Google Scholar 

  43. Khan M, Damalas CA (2015a) Farmers’ willingness to pay for less health risks by pesticide use: a case study from the cotton belt of Punjab, Pakistan. Sci Total Environ 530-531:297–303. https://doi.org/10.1016/j.scitotenv.2015.05.110

    CAS  Article  Google Scholar 

  44. Khan M, Damalas CA (2015b) Farmers' knowledge about common pests and pesticide safety in conventional cotton production in Pakistan. Crop Prot 77:45–51. https://doi.org/10.1016/j.cropro.2015.07.014

    Article  Google Scholar 

  45. Khan M, Damalas CA (2015c) Factors preventing the adoption of alternatives to chemical pest control among Pakistani cotton farmers. Int J Pest Manage 61:9–16

    CAS  Article  Google Scholar 

  46. Khan DA, Bhatti MM, Khan FA, Naqvi ST, Karam A (2008) Adverse effects of pesticides residues on biochemical markers in pakistani tobacco farmers. Int J Clin Exp Med 1:274–282

    CAS  Google Scholar 

  47. Khan M, Mahmood HZ, Damalas CA (2015) Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Prot 67:184–190. https://doi.org/10.1016/j.cropro.2014.10.013

    Article  Google Scholar 

  48. Kim K, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    CAS  Article  Google Scholar 

  49. Koh SB, Kim TH, Min S, Lee K, Kang DR, Choi JR (2017) Exposure to pesticide as a risk factor for depression: a population-based longitudinal study in Korea. Neurotoxicology 62:181–185. https://doi.org/10.1016/j.neuro.2017.07.005

    CAS  Article  Google Scholar 

  50. Lesmes-Fabian C, García-Santos G, Leuenberger F, Nuyttens D, Binder CR (2012) Dermal exposure assessment of pesticide use: the case of sprayers in potato farms in the Colombian highlands. Sci Total Environ 430:202–208. https://doi.org/10.1016/j.scitotenv.2012.04.019

    CAS  Article  Google Scholar 

  51. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h

    CAS  Article  Google Scholar 

  52. Li S, Yan T, Yang JQ, Oberley TD, Oberley LW (2000) The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res 60:3927–3939

    CAS  Google Scholar 

  53. Lu JL (2009) Comparison of pesticide exposure and physical examination, neurological assessment, and laboratory findings between full-time and part-time vegetable farmers in the Philippines. Environ Health Prev Med 14:345–352. https://doi.org/10.1007/s12199-009-0105-x

    CAS  Article  Google Scholar 

  54. Madani FZ, Hafida M, Merzouk AS, Loukidi B, Taouli K, Narce M (2016) Hemostatic, inflammatory, and oxidative markers in pesticide user farmers. Biomarkers 21:138–145. https://doi.org/10.3109/1354750X.2015.1118545

    CAS  Article  Google Scholar 

  55. Mandić-Rajčević S, Rubino FM, Colosio C (2020) Establishing health-based biological exposure limits for pesticides: a proof of principle study using mancozeb. Regul Toxicol Pharmacol 115:104689. https://doi.org/10.1016/j.yrtph.2020.104689

    CAS  Article  Google Scholar 

  56. Marconi MA, Lakatos EM (2016) Fundamentos de metodologia científica: 7. Ed Atlas, São Paulo (in Portuguese)

    Google Scholar 

  57. Margalit RC, Adler B, Abramson JH, Gofin J, Kark JD (2006) Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clin Chem 52:845–852. https://doi.org/10.1373/clinchem.2005.059857

    CAS  Article  Google Scholar 

  58. Mecdad AA, Ahmed MH, ElHalwagy MEA, Afify MMM (2011) A study on oxidative stress biomarkers and immunomodulatory effects of pesticides in pesticide-sprayers. Egypt J Forensic Sci 1:93–98. https://doi.org/10.1016/j.ejfs.2011.04.012

    Article  Google Scholar 

  59. Nelson DP, Kiesov LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478. https://doi.org/10.1016/0003-2697(72)90451-4

    CAS  Article  Google Scholar 

  60. Ogut S, Gultekin F, Kisioglu AN, Kucukoner E (2011) Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol Ind Health 27:820–825. https://doi.org/10.1177/0748233711399311

    CAS  Article  Google Scholar 

  61. Pedlowski MA, Canela MC, Terra MAC, Faria RMR (2012) Modes of pesticides utilization by Brazilian smallholders and their implications for human health and the environment. Crop Prot 31:113–118. https://doi.org/10.1016/j.cropro.2011.10.002

    Article  Google Scholar 

  62. Phillips TM (2000) Assessing environmental exposure in children: immunotoxicology screening. J Expo Anal Environ Epidemiol 10:769–775

    CAS  Article  Google Scholar 

  63. Piccoli C, Cremonese C, Koifman R, Koifman S, Freire C (2016) Pesticide exposure and thyroid function in an agricultural population in Brazil. Environ Res 151:389–398. https://doi.org/10.1016/j.envres.2016.08.011

    CAS  Article  Google Scholar 

  64. Pirard C, Remyb S, Giustib A, Champonb L, Charliera C (2020) Assessment of children’s exposure to currently used pesticides in wallonia, Belgium. Toxicol Lett. 329:1–11. https://doi.org/10.1016/j.toxlet.2020.04.020

    CAS  Article  Google Scholar 

  65. Ranjbar A, Solhi H, Mashayekhi FJ, Susanabdi A, Rezaie A, Abdollahi M (2005) Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ Toxicol Pharmacol 20:88–91. https://doi.org/10.1016/j.etap.2004.10.007

    CAS  Article  Google Scholar 

  66. Repetto R, Baliga SS (1997) Pesticides and immunosuppression: the risks to public health. Health Policy Plan 12:97–106. https://doi.org/10.1093/heapol/12.2.97

    CAS  Article  Google Scholar 

  67. Rio Grande do Sul (2009) Secretaria da Agricultura, Pecuária, Pesca e Agronegócio. http://www2.seapa.rs.gov.br/uploads/1270059901BatataInglesa.pdf. Accessed Oct 2020 (in Portuguese)

  68. Rio Grande do Sul (2020) Atlas socioeconômico do Rio Grande do Sul. https://atlassocioeconomico.rs.gov.br/batata-doce-e-batata-inglesa. Accessed Dec 2020 (in Portuguese)

  69. Saeed MF, Shaheen M, Ahmad I, Zakir A, Nadeem M, Chishti AA, Shahid M, Bakhsh K, Damalas C (2017) Pesticide exposure in the local community of Vehari District in Pakistan: an assessment of knowledge and residues in human blood. Sci Total Environ 587-588:137–144. https://doi.org/10.1016/j.scitotenv.2017.02.086

    CAS  Article  Google Scholar 

  70. Sankoh AI, Whittle R, Semple KT, Jones KC, Sweetman AJ (2016) An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environ Int 94:458–466. https://doi.org/10.1016/j.envint.2016.05.034

    CAS  Article  Google Scholar 

  71. Sapan HB, Paturussi I, Jusuf I et al (2017) Interleukin-6 and interleukin-10 gene polymorphisms and their plasma level after polytrauma. Int J Surg Open 7:5–9. https://doi.org/10.1016/j.ijso.2017.04.001

    Article  Google Scholar 

  72. Schmitt B, Vicenzi M, Garrel C, Denis FM (2015) Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: a comparative crossover study. Redox Biol 6:198–205. https://doi.org/10.1016/j.redox.2015.07.012

    CAS  Article  Google Scholar 

  73. Sharifzadeh MS, Abdollahzadeh G, Damalas CA, Rezaei R, Ahmadyousefi M (2019) Determinants of pesticide safety behavior among Iranian rice farmers. Sci Total Environ 651:2953–2960

    CAS  Article  Google Scholar 

  74. Simoniello MF, Kleinsorge EC, Carballo MA (2010) Evaluacion bioquimica de trabajadores rurales expuestos a pesticidas. Medicina 70:489–498 (in Spanish)

    CAS  Google Scholar 

  75. Suemizu H, Kawai K, Murayama N, Nakamura M, Yamazaki H (2018) Chimeric mice with humanized liver as a model for testing organophosphate and carbamate pesticide exposure. Pest Manag Sci 74:1424–1430. https://doi.org/10.1002/ps.4825

    CAS  Article  Google Scholar 

  76. Takada LT (2017) Innate immunity and inflammation in Alzheimer’s disease pathogenesis. Arq Neuropsiquiatr 7:607–608. https://doi.org/10.1590/0004-282x20170126

    Article  Google Scholar 

  77. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582. https://doi.org/10.1016/j.bbamcr.2014.05.014

    CAS  Article  Google Scholar 

  78. Veríssimo G, Bast A, Weseler AR (2017) Paraquat disrupts the anti-inflammatory action of cortisol in human macrophages in vitro: therapeutic implications for paraquat intoxications. Toxicol Res 6:232–241. https://doi.org/10.1039/c6tx00406g

    Article  Google Scholar 

  79. Vieira R, Venâncio CAS, Félix LM (2020) Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. Environ Sci Pollut Res Int 27:21174–21187. https://doi.org/10.1007/s11356-020-08412-0

    CAS  Article  Google Scholar 

  80. Wafa T, Nadia K, Amel N, Ikbal C, Insaf T, Asma K, Hedi MA, Mohamed H (2013) Oxidative stress, hematological and biochemical alterations in farmers exposed to pesticides. J Environ Sci Health B 48:1058–1069. https://doi.org/10.1080/03601234.2013.824285

    CAS  Article  Google Scholar 

  81. Weiss-Altaner ER (1983) Rural exodus in the third world: a malthusian crisis? Hist Eur Ideas 4:183–201. https://doi.org/10.1016/0191-6599(83)90005-0

    Article  Google Scholar 

  82. Yang SN, Hsieh CC, Kuo HF, Lee MS, Huang MY, Kuo CH, Hung CH (2014) The effects of environmental toxins on allergic inflammation. Allergy, Asthma Immunol Res 6:478–484. https://doi.org/10.4168/aair.2014.6.6.478

    CAS  Article  Google Scholar 

  83. Ye X, Pan W, Zhao Y, Zhao S, Zhu Y, Liu W, Liu J (2017) Association of pyrethroids exposure with onset of puberty in Chinese girl. Environ Pollut 227:606–612. https://doi.org/10.1016/j.envpol.2017.04.035

    CAS  Article  Google Scholar 

  84. Zepeda-Arce R, Rojas-García AE, Benitez-Trinidad A, Herrera-Moreno JF, Medina-Díaz IM, Barrón-Vivanco BS, Villegas GP, Hernández-Ochoa I, Sólis Heredia MJ, Bernal-Hernández YY (2017) Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ Toxicol 32:1754–1764. https://doi.org/10.1002/tox.22398

    CAS  Article  Google Scholar 

  85. Zhang X, Zhao W, Jing R, Wheeler K, Smith GA, Stallones L, Xiang H (2011) Work-related pesticide poisoning among farmers in two villages of Southern China: a cross-sectional survey. BMC Public Health 11:429. https://doi.org/10.1186/1471-2458-11-429

    Article  Google Scholar 

  86. Zhao MA, Yu A, Zhu YZ, Kim JH (2015) Potential dermal exposure to flonicamid and risk assessment of applicators during treatment in apple orchards. J Occup Environ Hyg 12:D147–D152. https://doi.org/10.1080/15459624.2015.1009984

    CAS  Article  Google Scholar 

  87. Zhu Y, Deng G, Ji A, Yao J, Meng X, Wang J, Wang Q, Wang Q, Wang R (2017) Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress. Int J Nanomedicine 12:7143–7152. https://doi.org/10.2147/IJN.S143192

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

ELS distributed the questionnaires, collected the biological material, analyzed the results, and wrote the manuscript; RCH determined the biochemical analyses; VS performed statistical analysis of data; MS determined the biochemical analyses; TRS prepared the figures and map, and wrote the manuscript; BC guided the study elaboration process and corrected the wording. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Barbara Clasen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The Research Ethics Committee under Protocol number 0071.0.417.000-11.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lotfi Aleya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lovison Sasso, E., Cattaneo, R., Rosso Storck, T. et al. Occupational exposure of rural workers to pesticides in a vegetable-producing region in Brazil. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12444-5

Download citation

Keywords

  • Potato farmers
  • Health
  • Biomarkers
  • Personal protective equipment