Performance and mechanism of high-speed vermicomposting of dewatered sludge using a new type of laboratory earthworm reactor

Abstract

To solve the problem of the traditional vermicomposting cycle being too long, a new type of laboratory earthworm reactor was developed for high-speed vermicomposting of sludge. The earthworm reactor was established based on the model of first creating an optimal living environment for earthworms and then introducing sludge into the environment for vermicomposting. In addition, we selected four different materials to condition sludge to optimize the treatment efficiency and shorten the vermicomposting cycle. The results revealed that the use of the new earthworm reactor for high-speed vermicomposting can shorten the vermicomposting cycle to 61.33 h, which is 1/30 of the traditional method. Compared to the traditional method, the vermicompost obtained from high-speed vermicomposting had better stability and maturity (C/N: 14.96, humification index: 4.69, Germination index: 78.84%, TOC: 88.5 mg/g and ash content: 686 mg/g). Besides, the FT-IR, SEM, EEM, and enzyme activity from the earthworm analysis results show that the addition of vermicompost (raw material) was beneficial to the stability and mineralization of the final vermicompost for dewatered sludge vermicomposting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Aira M, Monroy F, Dominguez J (2006) Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol 52:738–747. https://doi.org/10.1007/s00248-006-9109-x

    Article  Google Scholar 

  2. Ananthavalli R, Ramadas V, Paul JAJ, Selvi BK, Karmegam N (2019) Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour Technol 275:394–401. https://doi.org/10.1016/j.biortech.2018.12.091

    CAS  Article  Google Scholar 

  3. Arancon NQ, Edwards CA, Atiyeh R, Metzger JD (2004) Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresour Technol 93(2):139–144. https://doi.org/10.1016/j.biortech.2003.10.015

    CAS  Article  Google Scholar 

  4. Benito M, Masaguer A, Moliner A, Arrigo N, Palma RM (2003) Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biol Fertil Soils 37:184–189. https://doi.org/10.1007/s00374-003-0584-7

    CAS  Article  Google Scholar 

  5. Bhat SA, Singh J, Vig AP (2015) Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost Springerplus:4. https://doi.org/10.1186/s40064-014-0780-y

  6. Bian BO, Hu X, Tian G, Zhang T, Zhang L (2020). Earthworm reactor of frame composite structure and method of treating sludge thereby. U.S. patent 16881439

  7. Boruah T, Barman A, Kalita P, Lahkar J, Deka H (2019) Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresour Technol 294. https://doi.org/10.1016/j.biortech.2019.122147.

  8. Deka H, Deka S, Baruah CK, Das J, Hoque S, Sarma H, Sarma NS (2011) Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of java citronella - An aromatic oil yielding plant. Bioresour Technol 102:11212–11217. https://doi.org/10.1016/j.biortech.2011.09.102

    CAS  Article  Google Scholar 

  9. Droussi Z, D'Orazio V, Provenzano MR, Hafidi M, Ouatmane A (2009) Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J Hazard Mater 164:1281–1285. https://doi.org/10.1016/j.jhazmat.2008.09.081

    CAS  Article  Google Scholar 

  10. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Springer Science Business Media Volume 3. https://doi.org/10.1016/S0167-8809(97)88859-7.

  11. Elvira C, Goicoechea M, Sampedro L, Mato S, Nogales R (1996) Bioconversion of solid paper-pulp mill sludge by earthworms. Bioresour Technol 57:173–177. https://doi.org/10.1016/0960-8524(96)00065-X

    CAS  Article  Google Scholar 

  12. EPA. 1996. Microwave assisted acid digestion of siliceous and organically based matrices. EPA, Washington, DC, pp.

  13. Fayolle L, Michaud H, Cluzeau D, Stawiecki J (1997) Influence of temperature and food source on the life cycle of the earthworm Dendrobaena veneta (Oligochaeta). Soil Biol Biochem 29:747–750. https://doi.org/10.1016/S0038-0717(96)00023-5

    CAS  Article  Google Scholar 

  14. Fu X, Cui G, Huang K, Chen X, Li F, Zhang X, Li F (2016) Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community. Environ Sci Pollut Res 23(5):4522–4530. https://doi.org/10.1007/s11356-015-5659-0

    CAS  Article  Google Scholar 

  15. Goswami L, Pratihar S, Dasgupta S, Bhattacharyya P, Mudoi P, Bora J, Bhattacharya SS, Kim KH (2016) Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis. Sci Rep 6. https://doi.org/10.1038/srep30402

  16. Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl Soil Ecol 16:49–61. https://doi.org/10.1016/S0929-1393(00)00081-0

    Article  Google Scholar 

  17. Gutierrez-Miceli FA, Santiago-Borraz J, Montes Molina JA, Nafate CC, Abud-Archila M, Oliva Llaven MA, Rincon-Rosales R, Dendooven L (2007) Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour Technol 98(15):2781–2786. https://doi.org/10.1016/j.biortech.2006.02.032

    CAS  Article  Google Scholar 

  18. Hait S, Tare V (2011) Vermistabilization of primary sewage sludge. Bioresour Technol 102:2812–2820. https://doi.org/10.1016/j.biortech.2010.10.031

    CAS  Article  Google Scholar 

  19. Hanc A, Hrebeckova T, Pliva P, Cajthaml T (2020) Vermicomposting of sludge from a malt house. Waste Manag 118:232–240. https://doi.org/10.1016/j.wasman.2020.08.027

    CAS  Article  Google Scholar 

  20. He X, Zhang Y, Shen M, Zeng G, Zhou M, Li M (2016) Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials. Bioresour Technol 218:867–873. https://doi.org/10.1016/j.biortech.2016.07.045

    CAS  Article  Google Scholar 

  21. Huang Guofeng WQ, Qingqiang M, Huanzhong H (2002) Substance changes and maturity evaluation during pig manure composting. J South China Agric Univ 23:1–4. https://doi.org/10.1007/s11769-002-0041-9

    Article  Google Scholar 

  22. Huang K, Chen JY, Guan MX, Xia H, Lin L (2020a) Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. J Hazard Mater 397:0304–3894. https://doi.org/10.1016/j.jhazmat.2020.122767

    CAS  Article  Google Scholar 

  23. Huang QJ, Shen YW, Wang YH, Xiao JM, Yuan HP, Lou ZY, Zhu NW (2020b) Synergy between denitrification and calcium bridging improves dewaterability of waste activated sludge. J Cleaner Prod 242. https://doi.org/10.1016/j.jclepro.2019.118438.

  24. Karmegam N, Vijayan P, Prakash M, Paul JAJ (2019) Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J Clean Prod 228:718–728. https://doi.org/10.1016/j.jclepro.2019.04.313

    CAS  Article  Google Scholar 

  25. Kaushik P, Garg VK (2003) Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresour Technol 90:311–316. https://doi.org/10.1016/S0960-8524(03)00146-9

    CAS  Article  Google Scholar 

  26. Lazcano C, Gomez-Brandon M, Dominguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019. https://doi.org/10.1016/j.chemosphere.2008.04.016

    CAS  Article  Google Scholar 

  27. Lim PN, Wu TY, Sim EYS, Lim SL (2011) The potential reuse of soybean husk as feedstock of Eudrilus eugeniae in vermicomposting. J Sci Food Agric 91:2637–2642

    CAS  Article  Google Scholar 

  28. Malinska K, Golanska M, Caceres R, Rorat A, Weisser P, Slezak E (2017) Biochar amendment for integrated composting and vermicomposting of sewage sludge - The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour Technol 225:206–214. https://doi.org/10.1016/j.biortech.2016.11.049

    CAS  Article  Google Scholar 

  29. Marhuenda-Egea FC, Martinez-Sabater E, Jorda J, Moral R, Bustamante MA, Paredes C, Perez-Murcia MD (2007) Dissolved organic matter fractions formed during composting of winery and distillery residues: Evaluation of the process by fluorescence excitation-emission matrix. Chemosphere 68:301–309. https://doi.org/10.1016/j.chemosphere.2006.12.075

    CAS  Article  Google Scholar 

  30. Nayak AK, Varma S, Kalamdhad AS (2013) Effects of varius C/N ratios during vermicomposting of sewage sludge using Eisenia fetida. Environ Sci Technol 6:63–78b

    Article  Google Scholar 

  31. Nelson DW (1982) Total carbon, organic carbon and organic matter. Methods Soil Anal 9:961–1010. https://doi.org/10.2136/sssabookser5.3.c34

    Article  Google Scholar 

  32. Parthasarathi K, Balamurugan M, Prashija KV, Jayanthi L, Ameer Basha S (2016) Potential of Perionyx excavatus(Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. Int J Recycl Organic Waste Agric 5:65–86. https://doi.org/10.1007/s40093-016-0118-6

    Article  Google Scholar 

  33. Pattnaik S, Reddy MV (2010) Assessment of municipal solid waste management in Puducherry (Pondicherry). India Resour Conserv Recycl 54:512–520. https://doi.org/10.1016/j.resconrec.2009.10.008

    Article  Google Scholar 

  34. Pigatin LBF, Atoloye IA, Obikoya OA, Borsato AV, Rezende MOO (2016) Chemical study of vermicomposted agroindustrial wastes. Int J Recycl Organic Waste Agric 5:55–63. https://doi.org/10.1007/s40093-016-0117-7

    Article  Google Scholar 

  35. Pramanik P, Ghosh GK, Ghosal PK, Banik P (2007) Changes in organic - C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour Technol 98:2485–2494. https://doi.org/10.1016/j.biortech.2006.09.017

    CAS  Article  Google Scholar 

  36. Ravindran B, Dinesh SL, Kennedy LJ, Sekaran G (2008) Vermicomposting of Solid Waste Generated from Leather Industries Using Epigeic Earthworm Eisenia foetida. Appl Biochem Biotechnol 151:480–488. https://doi.org/10.1007/s12010-008-8222-3

    CAS  Article  Google Scholar 

  37. Sangwan P, Kaushik CP, Garg VK (2008) Vermiconversion of industrial sludge for recycling the nutrients. Bioresour Technol 99:8699–8704. https://doi.org/10.1016/j.biortech.2008.04.022

    CAS  Article  Google Scholar 

  38. Sharma K, Garg VK (2017) Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environ Sci Pollut Res 24:7829–7836. https://doi.org/10.1007/s11356-017-8438-2

    CAS  Article  Google Scholar 

  39. Sharma K, Garg VK (2018) Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol 250:708–715. https://doi.org/10.1016/j.biortech.2017.11.101

    CAS  Article  Google Scholar 

  40. Smidt E, Meissl K (2007) The applicability of fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manage 27:268–276. https://doi.org/10.1016/j.wasman.2006.01.016

    CAS  Article  Google Scholar 

  41. Soobhany N, Gunasee S, Rago YP, Joyram H, Raghoo P, Mohee R, Garg VK (2017) Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity. Bioresour Technol 236:11–19. https://doi.org/10.1016/j.biortech.2017.03.161

    CAS  Article  Google Scholar 

  42. Srivastava V, Goel G, Thakur VK, Singh RP, Araujo ASF, Singh P (2020) Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J Environ Manage 255. https://doi.org/10.1016/j.jenvman.2019.109914w.

  43. Suthar S (2009) Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol Eng 35:914–920. https://doi.org/10.1016/j.ecoleng.2008.12.019

    Article  Google Scholar 

  44. Tripathi G, Bhardwaj P (2004) Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresour Technol 92:275–283. https://doi.org/10.1016/j.biortech.2003.09.005

    CAS  Article  Google Scholar 

  45. Wang P, Changa CM, Watson ME, Dick WA, Chen Y, Hoitink HAJ (2004a) Maturity indices for composted dairy and pig manures. Soil Biol Biochem 36:767–776. https://doi.org/10.1016/j.soilbio.2003.12.012

    CAS  Article  Google Scholar 

  46. Wang YQ, Schuchardt F, Sheng FL, Zhang RZ, Cao ZY (2004b) Assessment of maturity of vineyard pruning compost by Fourier Transform Infrared Spectroscopy, biological and chemical analyses. Landbauforschung Volkenrode 54:163–169. https://doi.org/10.1016/b978-0-12-599322-7.50009-9

    CAS  Article  Google Scholar 

  47. Wang L, Zhang Y, Lian J, Chao J, Gao Y, Yang F, Zhang L (2013) Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresour Technol 136:281–287. https://doi.org/10.1016/j.biortech.2013.03.039

    CAS  Article  Google Scholar 

  48. Yadav A, Garg VK (2016a) Vermiconversion of biogas plant slurry and parthenium weed mixture to manure. Int J Recycl Organic Waste Agric 5(4):1–9. https://doi.org/10.1007/s40093-016-0140-8

    Article  Google Scholar 

  49. Yadav A, Garg VK (2016b) Influence of stocking density on the vermicomposting of an effluent treatment plant sludge amended with cow dung. Environ Sci Pollut Res 23(13):13317–13326. https://doi.org/10.1007/s11356-016-6522-7

    CAS  Article  Google Scholar 

  50. Yadav A, Suthar S, Garg VK (2015) Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry. Environ Sci Pollut Res 22(19):14702–14709. https://doi.org/10.1007/s11356-015-4672-7

    CAS  Article  Google Scholar 

  51. Yu GH, He PJ, Shao LM (2010) Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis. Water Res 44:797–806. https://doi.org/10.1016/j.watres.2009.10.021

    CAS  Article  Google Scholar 

  52. Yu Z, Tang J, Liao H, Liu X, Zhou P, Chen Z, Rensing C, Zhou S (2018) The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour Technol 265:146–154. https://doi.org/10.1016/j.biortech.2018.06.011

    CAS  Article  Google Scholar 

  53. Yuan Y, Tao Y, Zhou S, Yuan T, Lu Q, He J (2012) Electron transfer capacity as a rapid and simple maturity index for compost. Bioresour Technol 116:428–434. https://doi.org/10.1016/j.biortech.2012.03.114

    CAS  Article  Google Scholar 

  54. Zbytniewski R, Buszewski B (2005) Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 2: multivariate techniques in the study of compost maturation. Bioresour Technol 96:479–484. https://doi.org/10.1016/j.biortech.2004.05.019

    CAS  Article  Google Scholar 

  55. Zhang H, Li J, Zhang Y, Huang K (2020) Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int J Environ Res Public Health 17(5). https://doi.org/10.3390/ijerph17051748

Download references

Funding

This work was supported by the Social development project of Jiangsu Province of China (Nos. BE2018735, 2017631), Project for Comprehensive Management of Tai Lake Water Environment in Jiangsu Province (Nos. TH2018201) and the National Major Project of Science and Technology Ministry of China (Nos. 2017ZX07202-004).

Author information

Affiliations

Authors

Contributions

XH designed and conducted experiments, and was a major contributor in writing the manuscript. TZ collected samples and analyzed the data. GT collected samples and analyzed the data. LZ analyzed the data and modified the manuscript. BB designed the experiment and modified the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Bian.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ta Yeong Wu

Supplementary Information

ESM 1

(DOC 1196 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, T., Tian, G. et al. Performance and mechanism of high-speed vermicomposting of dewatered sludge using a new type of laboratory earthworm reactor. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12438-3

Download citation

Keyword

  • Vermicompost
  • Eisenia fetida
  • Stability and maturity
  • Supplementary materials
  • Mineralization
  • Humification