Effects of Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) and Mycobacterium sp. on the degradation of PAHs and bacterial community in soil

Abstract

Phytomicrobial remediation technology of PAH-contaminated soils has drawn great attention due to its low-cost, eco-friendly, and effective characteristics, but the mechanism underlying the removal of PAHs by rhizosphere in wastewater-irrigated soil is so far not clear. To evaluate the dissipation of PAHs and the shifts of bacterial community structure under plant-microorganism symbiotic system in an agricultural soil, a rhizo-box experiment with Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) or/and inoculated Mycobacterium sp. was conducted for 60 days. The changes of bacterial community structure and the contents of PAHs were analyzed by denaturing gradient gel electrophoresis (DGGE) and high-performance liquid chromatography (HPLC), respectively. The results showed that the removal rate of PAHs in phytomicrobial combined treatment was 53.7% after 60 days. The PAH-degraders were dominated by Microbacterium sp., Sphingomonas sp., Mycobacterium sp., and Flavobacterium sp. The plant of Fire Phoenix induced the appearance of Pseudomonas sp. and TM7 phylum sp. oral clone. The highest of bacterial diversity index was observed in unrhizosphere soils (MR−), rather than that in rhizosphere soils (MR+). In combination, phytomicrobial combined treatment of Fire Phoenix and Mycobacterium strain enhanced the removal rate of PAHs and changed the structure of bacterial community and bacterial diversity. Bacterial community has great effect on PAH degradation in PAH-contaminated soil from the wastewater-irrigated site. Our study can provide support information for PAH degradation enhancement by the synergetic effect of Fire Phoenix and Mycobacterium sp.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The authors declare that all relevant data supporting the findings of this study are included in this article and its supplementary information files.

References

  1. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636. https://doi.org/10.1021/es00049a001

    CAS  Article  Google Scholar 

  2. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot 80:723–736. https://doi.org/10.1002/jctb.1276

    CAS  Article  Google Scholar 

  3. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. Fems Microbiolog Ecolo 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    CAS  Article  Google Scholar 

  4. Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13:722–736. https://doi.org/10.1111/j.1462-2920.2010.02376.x

    CAS  Article  Google Scholar 

  5. Chen S, Ma Z, Li S, Waigi MG, Jiang JD, Liu J, Ling WT (2019) Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables. Environ Int 132:105081. https://doi.org/10.1016/j.envint.2019.105081

    CAS  Article  Google Scholar 

  6. Dai YY, Liu R, Zhou YM, Li N, Hou LQ, Ma Q, Gao B (2020) Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environ Int:136. https://doi.org/10.1016/j.envint.2019.105421

  7. Dominguez JJA, Bacosa HP, Chien MF, Inoue C (2019) Enhanced degradation of polycyclic aroma tic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum x drummondii). Chemosphere 234:789–795. https://doi.org/10.1016/j.chemosphere.2019.05.290

    CAS  Article  Google Scholar 

  8. Ely CS, Smets BF (2017) Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: implications for rhizodegradation. Int J Phytoremediat 19:877–883. https://doi.org/10.1080/15226514.2017.1303805

    CAS  Article  Google Scholar 

  9. Ely CS, Smets BF (2019) Guild composition of root-associated bacteria changes with increased soil contamination. Microb Ecol 78:416–427. https://doi.org/10.1007/s00248-019-01326-6

    CAS  Article  Google Scholar 

  10. Essien JP, Ebong GA, Asuquo JE, Olajire AA (2012) Hydrocarbons contamination and microbial degradation in mangrove sediments of the Niger Delta region (Nigeria). Chem Ecol 28:421–434. https://doi.org/10.1080/02757540.2012.686607

    CAS  Article  Google Scholar 

  11. Fernandez-Lopez C, Posada-Baquero R, Garcia JL, Castilla-Alcantara JC, Cantos M, Ortega-Calvo JJ (2020) Root-mediated bacterial accessibility and cometabolism of pyrene in soil. Sci Total Environ:143408. https://doi.org/10.1016/j.scitotenv.2020.143408

  12. Garcia-Sanchez M, Kosnar Z, Mercl F, Aranda E, Tlustos P (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotox Environ Safe 147:165–174. https://doi.org/10.1016/j.ecoenv.2017.08.012

    CAS  Article  Google Scholar 

  13. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30. https://doi.org/10.1016/j.plantsci.2008.09.014

    CAS  Article  Google Scholar 

  14. Guo MX, Gong ZQ, Allinson G, Tai PD, Miao RH, Li XJ, Jia CY, Zhuang J (2016) Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Chemosphere 144:1513–1520. https://doi.org/10.1016/j.chemosphere.2015.10.027

    CAS  Article  Google Scholar 

  15. Guo MX, Gong ZQ, Miao RH, Jia C, Rookes J, Cahill D, Zhuang J (2018) Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: bacterial community and functional gene expression mechanisms. Chemosphere 212:15–23. https://doi.org/10.1016/j.chemosphere.2018.08.057

    CAS  Article  Google Scholar 

  16. Guo MX, Gong ZQ, Miao RH, Su D, Li XJ, Jia CY, Zhuang J (2017) The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure. Ecol Eng 99:22–30. https://doi.org/10.1016/j.ecoleng.2016.11.018

    Article  Google Scholar 

  17. Haleyur N, Shahsavari E, Taha M, Khudur LS, Koshlaf E, Osborn AM, Ball AS (2018) Assessing the degradation efficacy of native PAH-degrading bacteria from aged, weathered soils in an Australian former gasworks site. Geoderma 321:110–117. https://doi.org/10.1016/j.geoderma.2018.02.004

    CAS  Article  Google Scholar 

  18. Hamdi H, Benzarti S, Aoyama I, Jedidi N (2012) Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeter Biodegr 67:40–47. https://doi.org/10.1016/j.ibiod.2011.10.009

    CAS  Article  Google Scholar 

  19. Harry-asobara JL, Kamei I (2019) Growth management of white-rot fungus Phlebia brevispora improved degradation of high-molecular-weight polycyclic aromatic hydrocarbons. 3 Biotech 9:403. https://doi.org/10.1007/s13205-019-1932-0

  20. He Y, Chi J, Qi Y (2016) Response of bacterial community structure to disappearance of phenanthrene and pyrene from sediment with different submerged macrophytes. Ecol Eng 91:207–211. https://doi.org/10.1016/j.ecoleng.2016.02.024

    Article  Google Scholar 

  21. Hou LQ, Liu R, Li N, Dai YY, Yan J (2019) Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganism. Environ Sci Pollut R 26:31401–31413. https://doi.org/10.1007/s11356-019-05828-1

    CAS  Article  Google Scholar 

  22. Jin JN, Yao J, Liu WJ, Zhang QY, Liu JL (2017) Fluoranthene degradation and binding mechanism study based on the active-site structure of ring-hydroxylating dioxygenase in Microbacterium paraoxydans JPM1. Environ Sci Pollut R 24:363–371. https://doi.org/10.1007/s11356-016-7809-4

    CAS  Article  Google Scholar 

  23. Kong FX, Sun GD, Liu ZP (2018) Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: performance and mechanism. Chemosphere 198:83–91. https://doi.org/10.1016/j.chemosphere.2018.01.097

    CAS  Article  Google Scholar 

  24. Lapie C, Sterckeman T, Paris C, Leglize P (2020) Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage. Environ Sci Pollut R 27:3124–3142. https://doi.org/10.1007/s11356-019-07298-x

    CAS  Article  Google Scholar 

  25. Li JB, Luo CL, Zhang DY, Cai XX, Jiang LF, Zhao X, Zhang G (2019a) Diversity of the active phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates. Soil Biol Biochem 128:100–110. https://doi.org/10.1016/j.soilbio.2018.10.008

    CAS  Article  Google Scholar 

  26. Li XN, Song Y, Wang F, Bian YR, Jiang X (2019b) Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: a mechanistic study. J Hazard Mater 364:325–331. https://doi.org/10.1016/j.jhazmat.2018.10.041

    CAS  Article  Google Scholar 

  27. Li XN, Song Y, Yao S, Bian YR, Gu CG, Yang XL, Wang F (2019c) Can biochar and oxalic acid alleviate the toxicity stress caused by polycyclic aromatic hydrocarbons in soil microbial communities? Sci Total Environ 695. https://doi.org/10.1016/j.scitotenv.2019.133879

  28. Liduino VS, Servulo EFC, Oliveira FJS (2018) Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.). J Environ Sci Heal A 53:609–616. https://doi.org/10.1080/10934529.2018.1429726

    CAS  Article  Google Scholar 

  29. Liu R, Dai YY, Sun LB (2015) Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. Plos One 10. doi:https://doi.org/10.1371/journal.pone.0120369

  30. Liu R, Jadeja RN, Zhou QX, Liu Z (2012) Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ Eng Sci 29:494–501. https://doi.org/10.1089/ees.2010.0490

    CAS  Article  Google Scholar 

  31. Liu R, Xiao N, Wei S, Zhao LX, An J (2014) Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ 473:350–358. https://doi.org/10.1016/j.scitotenv.2013.12.027

    CAS  Article  Google Scholar 

  32. Lu YF, Lu M (2015) Remediation of pah-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms. J Hazard Mater 285:535–541. https://doi.org/10.1016/j.jhazmat.2014.07.021

    CAS  Article  Google Scholar 

  33. Mesa-Marin J, Barcia-Piedras JM, Mateos-Naranjo E, Cox L, Real M, Perez-Romero JA (2019) Soil phenanthrene phytoremediation capacity in bacteria-assisted Spartina densiflora. Ecotox Environ Safe 182:877–883. https://doi.org/10.1016/j.ecoenv.2019.109382

    CAS  Article  Google Scholar 

  34. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700. https://doi.org/10.1128/aem.59.3.695-700.1993

    CAS  Article  Google Scholar 

  35. Niepceron M, Martin-Laurent F, Crampon M, Portet-Koltalo F, Akpa-Vinceslas M, Legras M, Bru D, Bureau F, Bodilis J (2013) GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environ Pollut 180:199–205. https://doi.org/10.1016/j.envpol.2013.05.040

    CAS  Article  Google Scholar 

  36. Salam LB, Obayori OS, Olatoye NO (2014) Biodegradation of anthracene by a novel actinomycete, Microbacterium sp. isolated from tropical hydrocarbon-contaminated soil. World J Microb Biot 30:335–341. https://doi.org/10.1007/s11274-013-1437-7

    CAS  Article  Google Scholar 

  37. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. https://doi.org/10.1016/s0167-7799(02)01943-1

    CAS  Article  Google Scholar 

  38. Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M (2018a) Impact of plant photosystems in the remediation of benzo a pyrene and pyrene spiked soils. Chemosphere 193:625–634. https://doi.org/10.1016/j.chemosphere.2017.11.081

    CAS  Article  Google Scholar 

  39. Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M (2019) Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. Chemosphere 222:132–140. https://doi.org/10.1016/j.chemosphere.2019.01.110

    CAS  Article  Google Scholar 

  40. Sivaram AK, Logeshwaran P, Subashchandrabose SR, Lockington R, Naidu R, Megharaj M (2018b) Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils. Sci Rep-UK 8. https://doi.org/10.1038/s41598-018-20317-0

  41. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090. https://doi.org/10.1016/j.chemosphere.2010.09.034

    CAS  Article  Google Scholar 

  42. Su JQ, Ouyang WY, Hong YW, Liao D, Khan S, Li H (2016) Responses of endophytic and rhizospheric bacterial communities of salt marsh plant (Spartina alterniflora) to polycyclic aromatic hydrocarbons contamination. J Soil Sediment 16:707–715. https://doi.org/10.1007/s11368-015-1217-0

    CAS  Article  Google Scholar 

  43. Torres-Farrada G, Manzano-León AN, Rineau F, Lea MR, Thijs S, Jambon I, Put J, Czech J, Rivera GG, Carleer R, Vangronsveld J (2019) Biodegradation of polycyclic aromatic hydrocarbons by native Ganoderma sp. strains: identification of metabolites and proposed degradation pathways. Appl Microbiol Biotechnol 103:7203–7215. https://doi.org/10.1007/s00253-019-09968-9

    CAS  Article  Google Scholar 

  44. Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, Kikuchi S, Ike M (2011) Accelerated biodegradation of pyrene and benzo a pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res 45:1629–1638. https://doi.org/10.1016/j.watres.2010.11.044

    CAS  Article  Google Scholar 

  45. Vital Lopez L, Cruz Hernandez MA, Fernandez Davila S, Mendoza Herrera A (2015) Bacterial diversity in roots of conventional and genetically modified hybrid maize. J Exp Bot 84:233–243

    Google Scholar 

  46. Wang J, Zhang P, Bao JT, Zhao JC, Song G, Yang HT, Huang L, He MZ, Li XR (2020) Comparison of cyanobacterial communities in temperate deserts: a cue for artificial inoculation of biological soil crusts. Sci Total Enviro 745:140970. https://doi.org/10.1016/j.scitotenv.2020.140970

    CAS  Article  Google Scholar 

  47. Wu YC, Ding QM, Zhu QH, Zeng J, Ji R, Dumont MG, Lin XG (2018) Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. Soil Bio Biochem 118:27–34. https://doi.org/10.1016/j.soilbio.2017.11.022

    CAS  Article  Google Scholar 

  48. Xu Y, Sun GD, Jin JH, Liu Y, Luo M, Zhong ZP, Liu ZP (2014) Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. J Hazard Mater 264:430–438. https://doi.org/10.1016/j.jhazmat.2013.10.071

    CAS  Article  Google Scholar 

  49. Yoshitomi KJ, Shann JR (2001) Corn (Zea mays L.) root exudates and their impact on C-14-pyrene mineralization. Soil Biol Biochem 33:1769–1776. https://doi.org/10.1016/s0038-0717(01)00102-x

    CAS  Article  Google Scholar 

  50. Zhu J, Fu L, Jin C, Meng Z, Yang N (2019) Study on the isolation of two atrazine-degrading bacteria and the development of a microbial agent. Microorganisms 7(3):80. https://doi.org/10.3390/microorganisms7030080

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China [grant numbers 41807128 and 31800399], the National Science Foundation for Post-doctoral of China [grant number 2018M632763], and the program for Science & Technology Innovation Team in Universities of Henan Province [19IRTSTHN029].

Author information

Affiliations

Authors

Contributions

Xuyang Zhao: conceptualization, methodology, investigation, analysis, writing—original draft; Renhui Miao: visualization, data curation, methodology, investigation, analysis; Meixia Guo: conceptualization, methodology, funding acquisition, formal analysis, writing—review and editing, supervision; Yanmei Zhou: resources, software, writing—review and editing.

Corresponding author

Correspondence to Meixia Guo.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Robert Duran

Supplementary information

ESM 1

(DOCX 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Miao, R., Guo, M. et al. Effects of Fire Phoenix (a genotype mixture of Fesctuca arundinecea L.) and Mycobacterium sp. on the degradation of PAHs and bacterial community in soil. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12432-9

Download citation

Keywords

  • Polycyclic aromatic hydrocarbons
  • Rhizoremediation
  • Bacterial community
  • Phytomicrobial remediate