Skip to main content
Log in

Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acrylamide (AA) is a hazardous chemical that is widely used in industrial practices. Spirulina platensis (SP) is a blue green alga that is rich in bioactive compounds with many medicinal benefits. The aim of the present study was to evaluate the ameliorative effect of SP against AA toxicity in rats. Animals were divided into six groups: Group (1) was normal rats, groups (2) and (3) received SP at 500 and 1000 mg/kg BW orally respectively for 21 days, group (4) was administered 20 mg/kg BW AA daily for 14 days, while groups (5) and (6) were given orally SP at the same doses of groups (2) and (3), then AA at similar dose of group (4). Rats that received AA alone displayed markedly increased serum levels of liver enzymes (ALT, AST, and ALP), kidney function parameters (urea and creatinine), DNA damage marker (8-OHdG), and proinflammatory cytokines (IL-1β, IL-6, and TNF-α), compared to control rats. Furthermore, tissue analysis revealed marked increases in hepatic, renal, and brain MDA and NO, as well as marked reductions in the antioxidant biomarkers (GSH, GSH-Px, SOD, and CAT) in acrylamide-intoxicated rats. Spirulina ameliorated the alterations in serum biochemical parameters and reduced MDA and NO, as well as improved antioxidant biomarkers in AA-intoxicated rats in a dose-dependent manner. Our results show that SP has a powerful protective effect on serum biochemistry and liver, kidney, and brain antioxidant machinery in AA-intoxicated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available from the corresponding author when required.

Abbreviations

AA:

acrylamide

ALT:

alanine aminotransferase

ALP:

alkaline phosphatase

ANOVA:

analysis of variance

AST:

aspartate aminotransferase

BW:

body weight

°C:

degree Celsius

CAT:

catalase

CCl4:

carbon tetrachloride

DNA:

deoxyribonucleic acid

ELISA:

enzyme-linked immunosorbent assay

g:

gram

GSH:

reduced glutathione

GSH-Px:

glutathione peroxidase

h:

hour

IL:

interleukin

kg:

kilogram

MDA:

malondialdehyde

mg:

milligram

min:

minute

mM:

millimolar

NO:

nitric oxide

Na2HPO4 :

disodium hydrogen phosphate

NaH2PO4 :

sodium dihydrogen phosphate

P:

probability

pH:

potential of hydrogen

ROS:

reactive oxygen species

rpm:

revolutions per minute

SEM:

standard error of the mean

SOD:

superoxide dismutase

SP :

Spirulina platensis

SPSS:

Statistical Package for Social Sciences

TNF-α:

tumor necrosis factor-alpha

8-OHdG:

8-hydroxy-2′-deoxyguanosine

β:

beta

References

  • Abdel-Daim MM (2014) Pharmacodynamic interaction of Spirulina platensis with erythromycin in Egyptian Baladi bucks (Capra hircus). Small Ruminant Research 120:234–241

    Article  Google Scholar 

  • Abdel-Daim MM, Abuzead SM, Halawa SM (2013) Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. Plos one 8:e72991

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Farouk SM, Madkour FF, AZAB SS (2015) Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacol Immunotoxicol 37:126–139

    Article  CAS  Google Scholar 

  • Abdel-Daim M, El-Bialy BE, Rahman HG, Radi AM, Hefny HA, Hassan AM (2016 Feb) Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: biochemical and histopathological studies. Biomed Pharmacother. 77:79–85. https://doi.org/10.1016/j.biopha.2015.12.003

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Abushouk AI, Alkhalf MI, Toraih EA, Fawzy MS, Ijaz H, Aleya L, Bungau SG (2018 Sep) Antagonistic effects of Spirulina platensis on diazinon-induced hemato-biochemical alterations and oxidative stress in rats. Environ Sci Pollut Res Int. 25(27):27463–27470. https://doi.org/10.1007/s11356-018-2761-0

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Dawood MAO, Elbadawy M, Aleya L, Alkahtani S (2020a) Spirulina platensis reduced oxidative damage induced by chlorpyrifos toxicity in Nile tilapia (Oreochromis niloticus). Animals 10:473

    Article  Google Scholar 

  • Abdel-Daim MM, Dawood MAO, AlKahtane AA, Abdeen A, Abdel-Latif HMR, Senousy HH, Aleya L, Alkahtani S (2020b Sep) Spirulina platensis mediated the biochemical indices and antioxidative function of Nile tilapia (Oreochromis niloticus) intoxicated with aflatoxin B1. Toxicon. 184:152–157. https://doi.org/10.1016/j.toxicon.2020.06.001

    Article  CAS  Google Scholar 

  • Abdelkhalek NK, Ghazy EW, Abdel-Daim MM (2015 Feb) Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res Int. 22(4):3023–3031. https://doi.org/10.1007/s11356-014-3578-0

    Article  CAS  Google Scholar 

  • Abdelkhalek NKM, Eissa IAM, Ahmed E, Kilany OE, El-Adl M, Dawood MAO, Hassan AM, Abdel-Daim MM (2017 Sep) Protective role of dietary Spirulina platensis against diazinon-induced oxidative damage in Nile tilapia. Oreochromis niloticus. Environ Toxicol Pharmacol. 54:99–104. https://doi.org/10.1016/j.etap.2017.07.002

    Article  CAS  Google Scholar 

  • AEBI H (1984) Catalase in Vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Avdagic N, Cosovic E, Nakas-Icindic E, Mornjakovic Z, Zaciragic A, Hadzovic-Dzuvo A (2008) Spirulina platensis protects against renal injury in rats with gentamicin-induced acute tubular necrosis. Bosn J Basic Med Sci 8:331–336

    Article  Google Scholar 

  • Babizhayev MA (2016) Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA Clin 6:49–68

    Article  Google Scholar 

  • Benitez, C., Lucas, A., Aispur, G., Álvarez, M., Llanos, C., Quintana, M. A. & Brandan, N. 2004. Efectos De Un Potencial Hepatotóxico: La Acrilamida Monomérica, En Un Modelo Murino. Comunicaciones científicas y tecnológicas.

    Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  • Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (Hmf): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-food science and technology 44:793–810

    Article  CAS  Google Scholar 

  • Chamorro, G., Salazar, M., Araujo, K. G., dos Santos, C. P., Ceballos, G. & Castillo, L. F. 2002. Update on the pharmacology of Spirulina (Arthrospira), an unconventional food. Arch Latinoam Nutr, 52, 232-240.

  • Coulombe JJ, Favreau L (1963) A new simple semimicro method for colorimetric determination of urea. Clin Chem 9:102–108

    Article  CAS  Google Scholar 

  • El-Beltagi HS, Ahmed MM (2016) Assessment the protective role of quercetin on acrylamide-induced oxidative stress in rats. Journal of Food Biochemistry 40:715–723

    Article  CAS  Google Scholar 

  • Farooq SM, Asokan D, Kalaiselvi P, Sakthivel R, Varalakshmi P (2004) Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury. Chem Biol Interact 149:1–7

    Article  CAS  Google Scholar 

  • GargourI, M., Soussi, A., Akrouti, A., Magne, C. & El Feki, A. 2018. Ameliorative effects of Spirulina platensis against lead-induced nephrotoxicity in newborn rats: modulation of oxidative stress and histopathological changes. Excli j, 17, 215-232.

  • Green l C, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15n] nitrate in biological fluids. Analytical biochemistry 126:131–138

    Article  CAS  Google Scholar 

  • Guyton AC, Hall JE (2006) Textbook of medical physiology 11th Ed. Elsiever Saunders. In: 788-817

    Google Scholar 

  • Kahkeshani N, Saeidnia S, Abdollahi M (2015) Role of antioxidants and phytochemicals on acrylamide mitigation from food and reducing its toxicity. J Food Sci Technol 52:3169–3186

    CAS  Google Scholar 

  • Kepekci RA, Polat S, Celik A, Bayat N, Saygideger SD (2013) Protective effect of Spirulina platensis enriched in phenolic compounds against hepatotoxicity induced by Ccl4. Food Chem 141:1972–1979

    Article  CAS  Google Scholar 

  • Klaunig JE (2008) Acrylamide carcinogenicity. J Agric Food Chem 56:5984–5988

    Article  CAS  Google Scholar 

  • Kumar N, Singh S, Patro N, Patro I (2009) Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats. Inflammopharmacology 17:181–190

    Article  Google Scholar 

  • Larsen K (1972) Creatinine assay by a reaction-kinetic principle. Clin Chim Acta 41:209–217

    Article  CAS  Google Scholar 

  • Liu Z, Song G, Zou C, Liu G, Wu W, Yuan T, Liu X (2015) Acrylamide induces mitochondrial dysfunction and apoptosis in Bv-2 microglial cells. Free Radical Biology and Medicine 84:42–53

    Article  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  Google Scholar 

  • Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  Google Scholar 

  • Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity 2016:1–23

    Article  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Pak W, Takayama F, Mine M, Nakamoto K, Kodo Y, Mankura M, Egashira T, Kawasaki H, Mori A (2012) Anti-oxidative and anti-inflammatory effects of Spirulina on rat model of non-alcoholic steatohepatitis. J Clin Biochem Nutr 51:227–234

    CAS  Google Scholar 

  • Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854

    Article  Google Scholar 

  • Pradeep K, Mohan CV, Gobianand K, Karthikeyan S (2007) Silymarin modulates the oxidant-antioxidant imbalance during diethylnitrosamine induced oxidative stress in rats. Eur J Pharmacol 560:110–116

    Article  CAS  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  Google Scholar 

  • Rivadeneyra-Dominguez E, Becerra-Contreras Y, Vazquez-Luna A, Diaz-Sobac R, Rodriguez-Landa JF (2018) Alterations of blood chemistry, hepatic and renal function, and blood cytometry in acrylamide-treated rats. Toxicol Rep 5:1124–1128

    Article  CAS  Google Scholar 

  • Salzano S, Checconi P, Hanschmann E-M, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proceedings of the National Academy of Sciences 111:12157–12162

    Article  CAS  Google Scholar 

  • Szczerbina T, Banach Z, Tylko G, Pyza E (2008) Toxic effects of acrylamide on survival, development and haemocytes of Musca domestica. Food Chem Toxicol 46:2316–2319

    Article  CAS  Google Scholar 

  • Tietz NW, Burtis CA, Duncan P, Ervin K, Petitclerc CJ, Rinker AD, Shuey D, Zygowicz ER (1983) A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem 29:751–761

    Article  CAS  Google Scholar 

  • Wu Q, Liu L, Miron A, Klimova B, Wan D, Kuca K (2016) The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 90:1817–1840

    Article  CAS  Google Scholar 

  • Yousef MI, El-Demerdash FM (2006) Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology 219:133–141

    Article  CAS  Google Scholar 

  • Yuliana ND, Khatib A, Link-Struensee AM, Ijzerman AP, Rungkat-Zakaria F, Choi YH, Verpoorte R (2009) Adenosine A1 receptor binding activity of methoxy flavonoids from Orthosiphon stamineus. Planta Med 75:132–136

    Article  CAS  Google Scholar 

  • Zhang L, Wang E, Chen F, Yan H, Yuan Y (2013) Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food & function 4:1229–1236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number PNU-DRI-RI-20-009.

Funding

The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia funded this research through project number PNU-DRI-RI-20-009.

Author information

Authors and Affiliations

Authors

Contributions

Idea and design: M.B-J., A.A.A., N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Data collection: M.B-J., A.A.A., N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Data analysis: M.B-J., A.A.A., N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Funding: M.B-J., M. M. A-D.

Investigation: M.B-J., A.A.A., N. A., M. K., M.M.A.F.

Methodology: M.B-J., A.A.A., N. A., M. K., M.M.A.F.

Project administration: M.B-J., M. M. A-D.

Software: N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Supervision: M.B-J., M. M. A-D.

Validation: N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Visualization: N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Manuscript draft writing: M.B-J., A.A.A., N. A., M. K., M.M.A.F., M.M.A.A., I.M.S., M. M. A-D.

Manuscript revision and editing: M.M.A.A., I.M.S., M. M. A-D.

All the authors approved and confirmed this submission.

Corresponding author

Correspondence to Mohamed M. Abdel-Daim.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics approval

The Research Ethical Committee of the Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt, permitted the experimental scheme and animal management (approval no. 2020042). We took all the possible procedures to reduce rat sufferance.

Consent to participate

Not applicable as the present study did not include human subject.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin-Jumah, M.N., AL-Huqail, A.A., Abdelnaeim, N. et al. Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environ Sci Pollut Res 28, 26653–26663 (2021). https://doi.org/10.1007/s11356-021-12422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12422-x

Keywords

Navigation