State of the art of post-consumer textile waste upcycling to reach the zero waste milestone

Abstract

The textile industry is a large source of pollution due to the production of raw materials (natural and synthetic fibers), preparation and finishing processes, as well as due to textile waste, especially the post-consumer waste. This paper is an attempt to change the perception concerning such waste. In the context of circular economy, textile waste has to be conceived as a source for carbon and energy. A new attitude is compulsory due to the increase of post-consumer waste quantity since the volume of textile consumption has lately increased. Fast fashion cycle and cheaper textile products having a shorter lifetime led to an increase of the quantity of post-consumer textile waste. Demands for pollution reduction generated the concern to upcycle the textile waste in order to recover, at least partially, the materials as well as the energy consumed for their manufacture, reducing accordingly the carbon and water footprints of these products,. The scarcity of raw materials and of fossil fuels, the high environmental impact of the simple disposal of waste, imposed a new policy regarding the transformation of the linear economy which characterizes today’s textile industry into a circular one, leading to a lower environmental impact. This involves the valorization of post-consumer waste by recycling or at least by a partial recovery of the materials and energy spent for the manufacture of these products. A good management of post-consumer textile waste is mandatory for attaining a zero waste target. Some good practices in the field are presented by this paper.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

All the data analyzed are included in the published articles presented into the references part.

References

  1. Abbaspour M, Aflaki E, Moghadas Nejad F (2019) Reuse of waste tire textile fibers as soil reinforcement. J Clean Prod 207:1059–1071. https://doi.org/10.1016/j.jclepro.2018.09.253

    CAS  Article  Google Scholar 

  2. Abdallah AM, Ugolini F, Baronti S, Maienza A, Ungaro F, Camilli F (2019) Assessment of two sheep wool residues from textile industry as organic fertilizer in sunflower and maize cultivation. Soil Sci Plant Nutr 19:793–807. https://doi.org/10.1007/s42729-019-00079-y

    CAS  Article  Google Scholar 

  3. Ajila KO (2019) Analysis of post-consumer solid textile waste management among households in Oyo State of Nigeria. J Environ Prot 10:1419-1435. https://www.scirp.org/journal/jep

  4. Amaechi CV, Agbomerie CO, Orok EO, Job S, Ye J (2020) Economic aspects of fiber reinforced polymer composite recycling. In: Hashmi S, Choudhury IA (eds) encyclopedia of renewable and sustainable materials, vol. 2, Elsevier Inc., Aalborg, pp. 377-397. https://doi.org/10.1016/b978-0-12-803581-8.10738-6

  5. Arafat HA, Jijakli K, Ahsan A (2015) Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. J Clean Prod 105:233–240. https://doi.org/10.1016/j.jclepro.2013.11.071

    Article  Google Scholar 

  6. Atif M, Kashif AUR, Khaliq Z, Mahmood A, Hussain MA, Bongiovanni R (2020) Electrochemical evaluation of textile industry waste derived carbon particles for UV-cured epoxy composites. Diam Relat Mater 105:107804. https://doi.org/10.1016/j.diamond.2020.107804

    CAS  Article  Google Scholar 

  7. Awasthi MK, Sarsaiya S, Chen H, Wang Q, Wang M, Awasthi SK, Li J, Liu T, Pandey A, Zhang Z (2019) Global status of waste to energy technology. In: Kumar S, Kumar R, Pandey A (eds) Current developments in biotechnology and bioengineering. Waste Treatment Processes for Energy Generation. Elsevier B.V. Amsterdam, pp. 31–59. https://doi.org/10.1016/B978-0-444-64083-3.00003-8

  8. Barla F, Nikolakopoulos A, Kokossis A (2018) Design of circular economy plants–the case of waste textiles to chemicals. In: Eden MR, Ierapetritou M, Towler GP (eds) Proceedings of the 13th International Symposium on Process Systems Engineering – PSE July 1–5, 2018, San Diego, California, USA, Elsevier B.V. https://doi.org/10.1016/B978-0-444-64241-7.50187-7

  9. Bartl A (2019) End-of-life textiles. In: Letcher TM, Vallero DA (eds) Waste a handbook for management, 2nd edn. Academic Press, Cambridge, pp 323–336. https://doi.org/10.1016/B978-0-12-815060-3.00016-5

    Google Scholar 

  10. Bates RB, Ghoniem AF (2012) Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Bioresour Technol 124:460–469. https://doi.org/10.1016/j.biortech.2012.07.018

    CAS  Article  Google Scholar 

  11. Bediako KJ, Wei W, Yun Y-S (2016) Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. J Taiwan Inst Chem Eng 63:250–258. https://doi.org/10.1016/j.jtice.2016.03.009

    CAS  Article  Google Scholar 

  12. Bhat AH, Dasan YK,Khan I,Soleimani H,Usmani A (2017) Application of nanocrystalline cellulose: processing and biomedical applications. In: Jawaid M, Boufi S, Khalil A HPS (eds.) cellulose-reinforced nanofibre composites production, Properties and Applications.Woodhead Publishing Series in Composites Science and Engineering. Elsevier, Amsterdam, pp. 215–240. https://doi.org/10.1016/B978-0-08-100957-4.00009-7

  13. Bidgoli H, Zamani A, Jeihanipou A, Taherzadeh MJ (2014) Preparation of carboxymethyl cellulose superabsorbents from waste textiles. Fiber Polym 15:431–436. https://doi.org/10.1007/s12221-014-0431-5

    CAS  Article  Google Scholar 

  14. Blazsó M (2010) Pyrolysis for recycling waste composites. In: Goodship V (ed) Management, recycling and reuse of waste composites. Series in Composites Science and Engineering, Woodhead Publishing Ltd., Cambridge, pp. 102-121. https://doi.org/10.1533/9781845697662.2.102

  15. Bundhoo ZMA (2018) Solid waste management in least developed countries: current status and challenges faced. J Mater Cycles Waste Manag 20:1867–1877. https://doi.org/10.1007/s10163-018-0728-3

    Article  Google Scholar 

  16. Castellani V, Sala S, Midabella N (2015) Beyond the throwaway society: a life cycle-based assessment of the environmental benefits of reuse. Integr Environ Assess Manag 11(3):373–382. https://doi.org/10.1002/ieam.1614

    CAS  Article  Google Scholar 

  17. Çay A, Yanık J (2019) Production of biochars from textile fibres through torrefaction and their characterization. Energy 166:664–673. https://doi.org/10.1016/j.energy.2018.10.123

    CAS  Article  Google Scholar 

  18. Çay A, Yanık J, Akduman Ç, Duman G, Ertaş H (2020) Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. J Clean Prod 251:119664. https://doi.org/10.1016/j.jclepro.2019.119664

    CAS  Article  Google Scholar 

  19. Chatha SAS, Asgher M, Iqbal HMN (2017) Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. Environ Sci Pollut Res 24:14005–14018. https://doi.org/10.1007/s11356-017-8998-1

    Article  Google Scholar 

  20. Chattopadhyay DP, Patel BH (2016) Synthesis, characterization and application of nano cellulose for enhanced performance of textiles. J Textile Sci Eng 6:2. https://doi.org/10.4172/2165-8064.1000248

    CAS  Article  Google Scholar 

  21. Chen W, He F, Zhang S, Xu H, Xu Z (2018) Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation. Environ Sci Pollut Res 25:9840–9848. https://doi.org/10.1007/s11356-018-1335-5

    CAS  Article  Google Scholar 

  22. Chen W, Qian J, Zhang M, Lu W, Zhang S, Xu H (2019a) Recycle of cotton waste by hard templating with magnesium acetate as MgO precursor. Environ Sci Pollut Res 26:29908–29916. https://doi.org/10.1007/s11356-019-06106-w

    CAS  Article  Google Scholar 

  23. Chen W, Zhang S, He F, Lu W, Xu H (2019b) Porosity and surface chemistry development and thermal degradation of textile waste jute during recycling as activated carbon. J Mater Cycles Waste Manag 21:315–325. https://doi.org/10.1007/s10163-018-0792-8

    CAS  Article  Google Scholar 

  24. Chen W, Zhang Y, Zhang S, Lu W, Xu H (2019c) Pyrolysis behavior and pore-forming mechanism during reuse of textile waste flax by activation. Waste Biomass Valorization 11:4259–4268. https://doi.org/10.1007/s12649-019-00770-2

    CAS  Article  Google Scholar 

  25. Chizaryfard A, Samie Y, Pal R (2018) New textile waste management through collaborative business models for sustainable innovation. In: Muthu SS (ed) Detox fashion. Textile Science and Clothing Technology. Springer, Singapore, pp. 81-111. https://doi.org/10.1007/978-981-10-4780-0_3

  26. Cobo S, Dominguez-Ramos A, Irabien A (2018) From linear to circular integrated waste management systems: a review of methodological approaches. Resour Conserv Recycl 135:279–295. https://doi.org/10.1016/j.resconrec.2017.08.003

    Article  Google Scholar 

  27. Correa do Amaral M, Zonatti WF, Liotino da Silva K, Karam Jr. D, Amato Neto J, Baruque-Ramos J (2018) Industrial textile recycling and reuse in Brazil: case study and considerations concerning the circular economy. G & P São Carlos 25(3):431–443. https://doi.org/10.1590/0104-530X3305

  28. Coste-Maniere I, Croizet K, Sette E, Fanien A, Guezguez H, Lafforgue H (2019) Circular economy: a necessary (r)evolution. In: Muthu SS (ed) Circular economy textiles and apparel: processing, manufacturing, and design. Elsevier Ltd., Oxford, pp 123–148. https://doi.org/10.1016/B978-0-08-102630-4.00006-6

    Google Scholar 

  29. Cucchiella F, D’Adamo I, Gastaldi M (2017) Sustainable waste management: waste to energy plant as an alternative to landfill. Energ Convers Manage 131:18–31. https://doi.org/10.1016/j.enconman.2016.11.012

    CAS  Article  Google Scholar 

  30. Echeverria CA, Handoko W, Pahlevani F, Sahajwalla V (2019) Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J Clean Prod 208:1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227

    Article  Google Scholar 

  31. Ekrami E, Dadashian F, Soleimani M (2014) Waste cotton fibers based activated carbon: optimization of process and product characterization. Fiber Polym 15(9):1855–1864. https://doi.org/10.1007/s12221-014-1855-7

    CAS  Article  Google Scholar 

  32. El Wazna M, Gounni A, El Bouari A, El Alami M, Cherkaoui O (2018) Development, characterization and thermal performance of insulating nonwoven fabrics made from textile waste. J Ind Text 48(7):1167–1183. https://doi.org/10.1177/1528083718757526

    CAS  Article  Google Scholar 

  33. Ellen MacArthur Foundation (2015) Methodology for policymakers to accelerate the transition In Delivering the circular economy a toolkit for policymakers, Ellen MacArthur Foundation, Cowes pp. 39–88.i https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_PolicymakerToolkit.pdf

  34. Epishkina VA, Kiselev AM, Tselms RN (2018) Perspectives in developing ecotechnologies for textile finishing. Fibre Chemistry 50(4):310-320 (Russian Original No. 4, July—August, 2018). https://doi.org/10.1007/s10692-019-09982-7

  35. Eriksson BG (2017) Organic textile waste as a resource for sustainable agriculture in arid and semi-arid areas. Ambio 46:155–161. https://doi.org/10.1007/s13280-016-0822-5

    CAS  Article  Google Scholar 

  36. Esteve-Turrillas FA, de la Guardia M (2017) Environmental impact of recover cotton in textile industry. Resour Conserv Recycl 116:107–115. https://doi.org/10.1016/j.resconrec.2016.09.034

    Article  Google Scholar 

  37. European Commission (EC) (2015) “Closing the loop-an EU action plan for the circular economy” COMMUNICATION FROM AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS, Brussels, 2.12.2015 614 final. https://ec.europa.eu/transparency/regdoc/rep/1/2015/EN/1-2015-614-EN-F1-1.PDF Accessed 20.03.2020

  38. European Commission (EC) (2017) “Sustainable garment value chains through EU development action”, COMMISSION STAFF WORKING DOCUMENT Brussels, 24.04.2017 147 final. https://ec.europa.eu/transparency/regdoc/rep/10102/2017/EN/SWD-2017-147-F1-EN-MAIN-PART-1.PDF Accessed 20.03.2020

  39. European Commission (EC) (2020) A new circular economy action plan for a cleaner and more competitive Europe. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS, Brussels, 11.3.2020 COM(2020) 98 final and Annex. https://ec.europa.eu/environment/circular-economy/ Accessed 27.06.2020

  40. European Environment Agency (EEA) (2014) Environmental indicators report environmental impacts of production-consumption systems in Europe. Publications Office of the European Union, Luxembourg, pp 113–115. https://op.europa.eu/en/publication-detail/-/publication/1cca7600-d5ba-4eac-a6bd-b89b5485cd00/language-en Accessed 20.06.2020

  41. European Parliament and European Council (EP and EC) (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. http://data.europa.eu/eli/dir/2008/98/oj Accessed 20.06.2020

  42. Fischer A, Pascucci S (2017) Institutional incentives in circular economy transition: the case of material use in the Dutch textile industry. J Clean Prod 155 (part 2):17-32. https://doi.org/10.1016/j.jclepro.2016.12.038

  43. Fockink DH, Andreaus J, Ramos LP, Łukasik RM (2020) Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: a case study using green solvents. Renew Energy 145:490–499. https://doi.org/10.1016/j.renene.2019.06.042

    CAS  Article  Google Scholar 

  44. Frischknecht R, Wyss F, Büsser Knöpfel S, Lützkendorf T, Balouktsi M (2015) Cumulative energy demand in LCA: the energy harvested approach. Int J Life Cycle Assess 20:957–969. https://doi.org/10.1007/s11367-015-0897-4

    CAS  Article  Google Scholar 

  45. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation. 1st edition, Ministerie van VROM, Hague. https://35f23ee4-a-62cb3a1a-s-sites.googlegroups.com/site Accessed 7.05.2020

  46. Gounni A, Tahar Mabrouk M, Elwazna M, Kheiri A, El Alami M, El Bouari A, Cherkaoui O (2019) Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Appl Therm Eng 149:475–483. https://doi.org/10.1016/j.applthermaleng2018.12.057

    Article  Google Scholar 

  47. Gregson N, Crang M (2015) Waste, resource recovery and labour: recycling economies in the EU. In: Michie J, Cooper CL (eds) Why the social sciences matter. Macmillan, London, pp 60–76. https://doi.org/10.1057/9781137269928_5

    Google Scholar 

  48. Guran S (2018) Sustainable waste to energy technologies: gasification and pyrolysis. In: Trabold TA, Babbitt CW (eds) Sustainable food waste to energy systems, Elsevier Inc. et all., Amsterdam, pp. 141-158. https://doi.org/10.1016/B978-0-12-811157-4.00008-5

  49. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    CAS  Article  Google Scholar 

  50. Hasanzadeha E, Mirmohamadsadeghia S, Karimia K (2018) Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 218:41–48. https://doi.org/10.1016/j.fuel.2018.01.035

    CAS  Article  Google Scholar 

  51. Haslinger S, Hummel M, Anghelescu-Hakala A, Määttänen M, Sixta H (2019) Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag 97:88–96. https://doi.org/10.1016/j.wasman.2019.07.040

    CAS  Article  Google Scholar 

  52. Hawley JM (2006) Digging for diamonds: a conceptual framework for understanding reclaimed textile. Cloth Text Res J 24:262–275. https://doi.org/10.1177/0887302X06294626

    Article  Google Scholar 

  53. Hemansi CS, Yadav G, Saini JK, Kuhad RC (2019) Comparative study of cellulase production using submerged and solid-state fermentation. In: Srivastava N, Srivastava M, Mishra PK, Ramteke PW, Singh RL (eds) New and future developments in microbial biotechnology and bioengineering: from cellulose to cellulase: strategies to improve biofuel. Elsevier, Amsterdam, pp 99–113. https://doi.org/10.1016/B978-0-444-64223-3.00007-2

    Google Scholar 

  54. Homem NC, Amorim MTP (2020) Synthesis of cellulose acetate using as raw material textile wastes. Mater Today Proc 31:S315–S317. https://doi.org/10.1016/j.matpr.2020.01.494

    CAS  Article  Google Scholar 

  55. Hou W, Ling C, Shi S, Yan Z, Zhang M, Zhang B, Dai J (2018) Separation and characterization of waste cotton/polyester blend fabric with hydrothermal method. Fiber Polym 19:742–750. https://doi.org/10.1007/s12221-018-7735-9

  56. Hu Y, Du C, Pensupa N, Lin CSK (2018a) Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ 118:133–142. https://doi.org/10.1016/j.psep.2018.06.009

    CAS  Article  Google Scholar 

  57. Hu Y, Du C, Leu S-Y, Jing H, Li X, Lin CSK (2018b) Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery. Resour Conserv Recycl 129:27–35. https://doi.org/10.1016/j.resconrec.2017.09.024

    Article  Google Scholar 

  58. Huang S, Tao R, Ismail A, Wang Y (2020) Cellulose nanocrystals derived from textile waste through acid hydrolysis and oxidation as reinforcing agent of soy protein film. Polymers 12:958. https://doi.org/10.3390/polym12040958

    CAS  Article  Google Scholar 

  59. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zip M, Hollander A, van Zelm R (2017) ReCiPe 2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147. https://doi.org/10.1007/s11367-016-1246-y

    Article  Google Scholar 

  60. Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911. https://doi.org/10.1007/s10570-019-02307-1

    CAS  Article  Google Scholar 

  61. Islam S, Bhat G (2019) Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. J Environ Manag 251:109536. https://doi.org/10.1016/j.jenvman.2019.109536

    Article  Google Scholar 

  62. Jia F, Yin S, Chen L, Chen X (2020) The circular economy in the textile and apparel industry. A systematic literature review. J Clean Prod 259:120728, https://doi.org/10.1016/j.jclepro.2020.120728

  63. Karnwal A, Singh S, Kumar V, Kaur Sidhu G, Singh Dhanjal D, Datta S, Sadaf Amin D, Saini M, Singh J (2019) Fungal enzymes for the textile industry. In: Yadav A, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal Biology. Springer, Cham, pp 459–482. https://doi.org/10.1007/978-3-030-10480-1_14

    Google Scholar 

  64. Karthik T, Rathinamoorthy R (2017) Sustainable synthetic fibre production. In Muthu SS (ed) Sustainable fibres and textiles. Woodhead Publishing, Sawston pp. 191-240. https://doi.org/10.1016/B978-0-08-102041-8.00008-1

  65. Khattab TA, Abdelrahman MS, Rehan M (2020) Textile dyeing industry: environmental impacts and remediation. Environ Sci Pollut Res 27:3803–3818. https://doi.org/10.1007/s11356-019-07137-z

    CAS  Article  Google Scholar 

  66. Koligkionia A, Parajuly K, Liholt Sørensen B, Cimpan C (2018) Environmental assessment of end-of-life textiles in Denmark. 25th CIRP Life Cycle Engineering (LCE) Conference, 30 April-2 May 2018, Copenhagen, Denmark. Procedia CIRP 69:962–967. https://doi.org/10.1016/j.procir.2017.11.090

  67. Koszewska M (2019) Circular economy in textiles and fashion the role of a consumer. In: Muthu SS (ed) Circular economy in textiles and apparel: processing, manufacturing, and design. Elsevier Ltd., Oxford, pp 183–206. https://doi.org/10.1016/B978-0-08-102630-4.00009-1

    Google Scholar 

  68. Lacoste C, El Hage R, Bergeret A, Corn S, Lacroix P (2018) Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydr Polym 184:1–8. https://doi.org/10.1016/j.carbpol.2017.12.019

    CAS  Article  Google Scholar 

  69. Landi D, Vitali S, Germani M (2016) Environmental analysis of different end of life scenarios of tires textile fibers. Procedia CIRP 48:508–513. https://doi.org/10.1016/j.procir.2016.03.141

    Article  Google Scholar 

  70. Landi D, Marconi M, Meo I, Germani M (2018) Reuse scenarios of tires textile fibers: an environmental evaluation. Procedia Manuf 21:329-336. https://doi.org/10.1016/j.promfg.2018.02.128

  71. LeBlanc R (2019) Textile recycling facts and figures. https://www.thebalancesmb.com/textile-recycling-facts-and-figures-2878122 Accessed 7.04.2020

  72. Leon AL, Potop GL, Hristian L, Manea LR (2016) Efficient technical solution for recycling textile materials by manufacturing nonwoven geotextiles. IOP Conf. Series: Materials Science and Engineering 145:22022. https://doi.org/10.1088/1757-899X/145/2/022022

  73. Li X, Hu Y, Du C, Lin CSK (2019a) Recovery of glucose and polyester from textile waste by enzymatic hydrolysis. Waste Biomass Valorization 10:3763–3772. https://doi.org/10.1007/s12649-018-0483-7

    CAS  Article  Google Scholar 

  74. Li X, Zhang M, Luo J, Zhang S, Yang X, DeshaniIgalavithana A, Sik Ok Y, Tsang DCW, Sze Ki Lin C (2019b) Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochem Eng J 149:107249. https://doi.org/10.1016/j.bej.2019.107249

    CAS  Article  Google Scholar 

  75. LIFE ECAP (2019) European Sustainable Clothing Action Plan LIFE14 ENV/UK/000257, http://www.ecap.eu.com/ Accessed 7.05.2020

  76. Lugo M, Ail SS, Castaldi MJ (2020) Approaching a zero-waste strategy by reuse in New York City: challenges and potential. Waste Manag Res 38:734–744. https://doi.org/10.1177/0734242X20919496

    CAS  Article  Google Scholar 

  77. Mahmoud ER (2015) Thermo-insulation properties of cross laid nonwoven fabrics made of PET and PP waste fibers. Int J Adv Res Sci Eng 4(9):211–226 http://www.ijarse.com

    Google Scholar 

  78. Maia LC, Alves AC, Leão CP (2019) Implementing lean production to promote textile and clothing industry sustainability. In: Alves A, Kahlen FJ, Flumerfelt S, Siriban-Manalang A (eds) Lean engineering for global development. Springer, Cham, pp 319–343. https://doi.org/10.1007/978-3-030-13515-7_11

    Google Scholar 

  79. Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier Science & Technology Books, Oxford, pp 322–361 https://www.elsevier.com/books/activated-carbon/marsh/978-0-08-044463-5

    Google Scholar 

  80. Meng X, Fan W, Ma Y, Wei T, Dou H, Yang X, Tian H, Yu Y, Zhang T, Gao L (2020) Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route. Text Res J 90(5–6):695–709. https://doi.org/10.1177/0040517519870317

    CAS  Article  Google Scholar 

  81. Mihai FC (2018) Waste collection in rural communities: challenges under EU regulations. A case study of Neamt County, Romania. J Material Cycles Waste 20:1337–1347. https://doi.org/10.1007/s10163-017-0637-x

    Article  Google Scholar 

  82. Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41. https://doi.org/10.1186/1754-6834-4-41

    CAS  Article  Google Scholar 

  83. Monteiro H, Caldeira F, Pinto J, Varum H (2018) Recycling textile residues into cement composites. Environmental Engineering & Management Journal 17 (8):1863-1868. www.eemj.icpm.tuiasi.ro/pdfs/accepted/9_546_Monteiro_13.pdf

  84. Muthu SS, Li Y, Hu JY, Ze L (2012) Carbon footprint reduction in the textile process chain: recycling of textile materials. Fiber Polym 13:1065–1070. https://doi.org/10.1007/s12221-012-1065-0

    CAS  Article  Google Scholar 

  85. Narani SS, Abbaspour M, Mir Mohammad Hosseini SM, Aflaki E, Moghadas Nejad F (2020) Sustainable reuse of waste tire textile fibers (WTTFs) as reinforcement materials for expansive soils: with a special focus on landfill liners/covers. J Clean Prod 247:119151. https://doi.org/10.1016/j.jclepro.2019.119151

    Article  Google Scholar 

  86. Navone L, Moffitt K, Hansen K-A, Blinco J, Payne A, Speight R (2020) Closing the textile loop: enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Manag 102(1):149–160. https://doi.org/10.1016/j.wasman.2019.10.026

    CAS  Article  Google Scholar 

  87. Norup N, Phil K, Damgaard A, Scheutz C (2018) Development and testing of a sorting and quality assessment method for textile waste. Waste Manag 79:8–21. https://doi.org/10.1016/j.wasman.2018.07.008

    Article  Google Scholar 

  88. Nunes LJR, Godina R, Matias JCO, Catalao JPS (2018) Economic and environmental benefits of using textile waste for the production of thermal energy. J Clean Prod 171:1353–1360. https://doi.org/10.1016/j.jclepro.2017.10.154

    Article  Google Scholar 

  89. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464. https://doi.org/10.1007/s00253-008-1668-y

    CAS  Article  Google Scholar 

  90. Palamutcu S (2017) Sustainable textile technologies. In: Muthu S (ed) Textiles and clothing sustainability. Textile Science and Clothing Technology. Springer, Singapore, pp 1–22. https://doi.org/10.1007/978-981-10-2474-0_1

    Google Scholar 

  91. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    CAS  Article  Google Scholar 

  92. Periyasamy AP, Ramamoorthy SK, Rwawiire S, Zhao Y (2018) Sustainable wastewater treatment methods for textile industry. In: Muthu S (ed) Sustainable innovations in apparel production. Textile Science and Clothing Technology. Springer, Singapore pp 21-87. https://doi.org/10.1007/978-981-10-8591-8_2

  93. Popa AA, Bucevschi A, Barbu I, Airinei E, Carpus E, Stanescu MD (2007) Textile waste management in the West part of Romania. State of the Art & Future Development, Proceedings of the 4th International Conference of Textile research division NRC, Cairo, Egipt, April 15-17, 4(2) pp 136-138. https://doi.org/10.13140/RG.2.1.3827.8162

  94. Racho P, Waiwong W (2019) Modified textile waste for heavy metals removal. 6th International Conference on Energy and Environment Research, ICEER, 22–25 July, University of Aveiro, Portugal, Energy Report 6(Spl.1): 927-932. https://doi.org/10.1016/j.egyr.2019.12.017

  95. Rago YP, Surroop D, Mohee R (2018) Torrefaction of textile waste for production of energy-dense biochar using mass loss as a synthetic indicator. J Environ Chem Eng 6:811–822. https://doi.org/10.1016/j.jece.2017.12.055

    CAS  Article  Google Scholar 

  96. Rani S, Jamal Z (2018) Recycling of textiles waste for environmental protection. Int J Home Sci 4(1):164–168 www.homesciencejournal.com

    Google Scholar 

  97. Ranjithkumar M, Ravikumar R, Sankar MK, Kumar MN, Thanabal V (2017) An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass Valorization 8:57–68. https://doi.org/10.1007/s12649-016-9563-8

    CAS  Article  Google Scholar 

  98. Resta B, Gaiardelli P, Pinto R, Dotti S (2016) Enhancing environmental management in the textile sector: an organisational-life cycle assessment approach. J Clean Prod 135:620–632. https://doi.org/10.1016/j.jclepro.2016.06.135

    Article  Google Scholar 

  99. Roy Choudhury AK (2014) Sustainable textile wet processing: applications of enzymes. In: Muthu SS (ed) Roadmap to sustainable textiles and clothing. Textile Science and Clothing Technology. Springer, Singapore, pp 203–238. https://doi.org/10.1007/978-981-287-065-0_7

    Google Scholar 

  100. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–a review. Biotechnol Rep 21:e00316. https://doi.org/10.1016/j.btre.2019.e00316

  101. Sheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19(1):18–43. https://doi.org/10.1039/C6GC02157C

    CAS  Article  Google Scholar 

  102. Shirvanimoghaddam K, Motamed B, Ramakrishna S, Naebe M (2020) Death by waste: fashion and textile circular economy case. Sci Total Environ 718:137317. https://doi.org/10.1016/j.scitotenv.2020.137317

    CAS  Article  Google Scholar 

  103. Siddique K, Rizwan M, Shahid MJ, Ali S, Ahmad R, Rizvi H (2017) Textile wastewater treatment options: a critical review. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. vol. 2: Non-biological approaches, Springer, Cham, pp. 183–207. https://doi.org/10.1007/978-3-319-55423-5_6

  104. Sillanpää M, Ncibi C (2019) The circular economy. In: Case studies about the transition from the linear economy. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-815267-6.00005-0

    Google Scholar 

  105. Stanescu MD, Fogorasi MS (2018) Biotechnology a tool for modification of cotton fibre. Chimica Oggi/Chemistry Today 36(5):56–58 https://www.teknoscienze.com/tks_article/biotechnology-a-tool-for-modification-of-cotton-fibre/

    CAS  Google Scholar 

  106. Stanescu MD, Fogorasi M, Dochia M, Mihuta S, Lozinsky VI (2009) Biotechnology for textile waste valorisation. Rev Chim (Bucharest) 60:59-62. https://www.revistadechimie.ro/RCRevChimie.asp?sYear=2009

  107. To MH, Uisan K, Ok YS, Pleissner D, Lin CSK (2019) Recent trends in green and sustainable chemistry: rethinking textile waste in a circular economy. Curr Opin Green Sustain Chem 20:1–10. https://doi.org/10.1016/j.cogsc.2019.06.002

    Article  Google Scholar 

  108. van Bommel H, Goorhuis M (2014) Design jeans for recycling: a supply chain case study in the Netherlands. Waste Manag Res 32(11):1142–1144. https://doi.org/10.1177/0734242X14549097

    Article  Google Scholar 

  109. van der Velden NM, Patel MK, Vogtländer JG (2014) LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int J Life Cycle Assess 19:331–356. https://doi.org/10.1007/s11367-013-0626-9

    CAS  Article  Google Scholar 

  110. Wanassi B, Azzouz B, BenHassen M (2016) Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers. Ind Crop Prod 87:27–32. https://doi.org/10.1016/j.indcrop.2016.04.020

    CAS  Article  Google Scholar 

  111. Wang Y, Zhang Y, Polk M, Kumar S, Muzzy J (2003) Recycling of carpet and textile fibers. In: Andrady AL (ed) Plastics and the environment: a handbook. John Wiley & Sons, New York, pp 697–725. https://doi.org/10.1002/0471721557.ch16

    Google Scholar 

  112. Wang S, Wei M, Xu Q, Jia H (2016) Functional porous carbons from waste cotton fabrics for dyeing wastewater purification. Fiber Polym 17:212–219. https://doi.org/10.1007/s12221-016-5749-8

    CAS  Article  Google Scholar 

  113. Wang H, Kaur G, Pensupa N, Uisan K, Du C, Yang X, Lin CSK (2018) Textile waste valorisation using submerged filamentous fungal fermentation. Process Saf Environ 118:143–151. https://doi.org/10.1016/j.psep.2018.06.038

    CAS  Article  Google Scholar 

  114. Wang Z, Xue D, Song H, Zhong X, Wang J, Hou P (2019) Hierarchical micro-mesoporous carbon prepared from waste cotton textile for lithium-sulfur batteries. Ionics 25:4057–4066. https://doi.org/10.1007/s11581-019-02968-9

    CAS  Article  Google Scholar 

  115. Wen C, Wu Y, Chen X, Jiang G, Liu D (2017) The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. J Therm Anal Calorim 128:581–591. https://doi.org/10.1007/s10973-016-5887-7

    CAS  Article  Google Scholar 

  116. Wilson L (2015) The sustainable future of Scottish textiles sector: challenge and opportunities of introducing a circular economy model. Text Cloth Sustain 1:5. https://doi.org/10.1186/s40689-015-0005-y

    Article  Google Scholar 

  117. Xu Z, Zhang D, Yuan Z, Chen W, Zhang T, Tian D, Deng H (2017) Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method. Environ Sci Pollut Res 24:22602–22612. https://doi.org/10.1007/s11356-017-9939-8

    CAS  Article  Google Scholar 

  118. Xu Z, Gu S, Sun Z, Zhang D, Zhou Y, Gao Y, Qi R, Chen W (2020) Synthesis of char-based adsorbents from cotton textile waste assisted by iron salts at low pyrolysis temperature for Cr(VI) removal. Environ Sci Pollut Res 27:11012–11025. https://doi.org/10.1007/s11356-019-07588-4

    CAS  Article  Google Scholar 

  119. Yacout DMM, Hassouna MS (2016) Identifying potential environmental impacts of waste handling strategies in textile industry. Environ Monit Assess 188:445. https://doi.org/10.1007/s10661-016-5443-8

    CAS  Article  Google Scholar 

  120. Yalcin-Enis I, Kucukali-Ozturk M, Sezgin H (2019) Risks and management of textile waste. In: Gothandam K, Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience and biotechnology for environmental applications. Environmental Chemistry for a Sustainable World, vol. 22. Springer, Cham, pp. 22-53. https://doi.org/10.1007/978-3-319-97922-9_2

  121. Yano J, Sakai S (2016) Waste prevention indicators and their implications from a life cycle perspective: a review. J Mater Cycles Waste 18:38–56. https://doi.org/10.1007/s10163-015-0406-7

    Article  Google Scholar 

  122. Yousef S, Tatariants M, Tichonovas M, Sarvar Z, Lukošiūtė S-I, Kliucininkas L (2019a) A new strategy for using textile waste as a sustainable source of recovered cotton. Resour Conserv Recycl 145:359–369. https://doi.org/10.1016/j.resconrec.2019.02.031

    Article  Google Scholar 

  123. Yousef S, Eimontas J, Striūgas N, Tatariants M, Abdelnaby MA, Tuckute S, Kliucininkas L (2019b) A sustainable bioenergy conversion strategy for textile waste with self catalysts using mini-pyrolysis plant. Energy Convers Manag 195:688–704. https://doi.org/10.1016/j.enconman.2019.06.050

    CAS  Article  Google Scholar 

  124. Yousef S, Tatariants M, Tichonovas M, Kliucininkas L, Lukošiūtė S-I, Yan L (2020) Sustainable green technology for recovery of cotton fibers and polyester from textile waste. J Clean Prod 254:120078. https://doi.org/10.1016/j.jclepro.2020.120078

    CAS  Article  Google Scholar 

  125. Yuan Z, Xu Z, Zhang D, Chen W, Huang Y, Zhang T, Tian D, Deng H, Zhou Y, Sun Z (2018) Mesoporous activated carbons synthesized by pyrolysis of waste polyester textiles mixed with Mg-containing compounds and their Cr(VI) adsorption. Colloids Surf A Physicochem Eng Asp 549:86–93. https://doi.org/10.1016/j.colsurfa.2018.04.008

    CAS  Article  Google Scholar 

  126. Zaman M, Park H, Kim Y-K, Park S-H (2019) Consumer orientations of second-hand clothing shoppers. J Glob Fash Market 10(2):163–176. https://doi.org/10.1080/20932685.2019.1576060

    Article  Google Scholar 

  127. Zhang L, Wang Y, Niu Z, Chen J (2018) Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 141:400–416. https://doi.org/10.1016/j.carbon.2018.09.067

    CAS  Article  Google Scholar 

  128. Zhou T, Xia F, Deng Y, Zhao Y (2018) Removal of Pb(II) from aqueous solutions using waste textiles/ poly(acrylic acid) composite synthesized by radical polymerization technique. J Environ Sci 67:368–377. https://doi.org/10.1016/j.jes.2017.04.010

    Article  Google Scholar 

  129. Zoccola M, Montarsolo A, Mossotti R, Patrucco A, Tonin C (2015) Green hydrolysis as an emerging technology to turn wool waste into organic nitrogen fertilizer. Waste Biomass Valorization 6:891–897. https://doi.org/10.1007/s12649-015-9393-0

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

As only author, Michaela Dina Stanescu has the following contributions: conceptualization, literature data acquisition and analysis, writing of the original manuscript, and writing and editing of the review form.

Corresponding author

Correspondence to Michaela Dina Stanescu.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stanescu, M.D. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12416-9

Download citation

Keywords

  • Textile post-consumer waste
  • Recycling worn clothes
  • Recovering fiber content
  • Valorization of carbon content
  • Energy production