Inventory review and environmental evaluation of first- and second-generation sugars through life cycle assessment

Abstract

In recent years, there has been a great movement towards the generation of knowledge related to the biorefinery concept. First-generation biorefineries bear the stigma of using arable land and edible crops for fuel instead of as sources of food and feed. However, second-generation biorefineries have not reached the level of full technical feasibility. Bearing in mind the objective of sugar production from sugar, starch, or lignocellulosic raw materials, the purpose of this study is to assess the environmental impact of first- and second-generation biorefineries, considering as an example for the comparative evaluation, the production of sugar fractions from crops (starch and sugar crops), and lignocellulosic biomass (hardwood and softwood). The characterization results were obtained using the ReCiPe 1.1 model, implemented through the SimaPro 9.0 software. Both production systems are inherently different and have strengths and weaknesses that must be carefully analyzed. The resulting environmental profile shows that the silviculture of wood contributes less to the environmental impact than cropping activities in most impact categories. In general, this study suggests that first-generation systems are burdened environmentally by the use of fertilizers, which have a significant impact on categories such as marine and freshwater eutrophication and terrestrial acidification, while second-generation systems are limited by the intensive processing steps needed for delignification, typically involving the use of chemicals and/or energy. LCA in early stages of the production of bio-based building blocks, rather than on the manufacture of biofuels or bioplastics, allows the precise identification of the environmental burdens that may be influencing the overall environmental profile of a biorefinery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. All data analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Achten WMJ, Acker K Van (2015) EU-average impacts of wheat production. A meta-analysis of life cycle assessments. 20:132-144. https://doi.org/10.1111/jiec.12278

  2. Alexandri M, Schneider R, Papapostolou H, Ladakis D, Koutinas A, Venus J (2019) Restructuring the conventional sugar beet industry into a novel biorefinery: fractionation and bioconversion of sugar beet pulp into succinic acid and value-added coproducts. ACS Sustain Chem Eng 7:6569–6579. https://doi.org/10.1021/acssuschemeng.8b04874

    CAS  Article  Google Scholar 

  3. Álvarez C, Reyes-Sosa FM, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 9:149–156. https://doi.org/10.1111/1751-7915.12346

    CAS  Article  Google Scholar 

  4. Anex RP, Ogletree AL (2006) Life-cycle assessment of energy-based impacts of a biobased process for producing 1 , 3-propanediol. In: Feedstocks for the Future. ACS Sympos, Washington, pp 222–238

    Google Scholar 

  5. Arifeen N, Kookos IK, Wang R, Koutinas AA, Webb C (2009) Development of novel wheat biorefining: effect of gluten extraction from wheat on bioethanol production. Biochem Eng J 43:113–121. https://doi.org/10.1016/j.bej.2008.09.005

    CAS  Article  Google Scholar 

  6. Bakker R, Elbersen W, Poppens R, Lesschen JP (2013) Rice straw and wheat straw. Potential feedstocks for the Biobased Economy, Wageningen

    Google Scholar 

  7. Baral NR, Shah A (2012) Techno-economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production. Biofuels Bioprod Biorefin 10:70–88. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  8. Bello S, Feijoo G, Moreira MT (2019) Energy footprints of the bio-refinery , hotel , and building sectors. In: Muthu SS (ed) Energy footprints of the bio-refinery, hotel and building sectors. environmental footprints and eco-design of products and processes. Springer, Singapore

    Google Scholar 

  9. Bello S, Ríos C, Feijoo G, Moreira MT (2018) Comparative evaluation of lignocellulosic biorefinery scenarios under a life-cycle assessment approach. Biofuels Bioprod Biorefin 12:1047–1064. https://doi.org/10.1002/bbb.1921

    CAS  Article  Google Scholar 

  10. Bengoa X, Rossi V, Humbert S, et al (2015) World Food LCA Database. Methodological Guidelines for the life cycle inventory of agricultural products

  11. Biddy MJ, Scarlata C, Kinchin C (2016) Chemicals from biomass: a market assessment of bioproducts with near-term potential. NREL Tech Rep 131. https://doi.org/10.2172/1244312

  12. Boone L, Van V, De Meester S et al (2016) Environmental life cycle assessment of grain maize production : an analysis of factors causing variability. Sci Total Environ 553:551–564. https://doi.org/10.1016/j.scitotenv.2016.02.089

    CAS  Article  Google Scholar 

  13. Buratti C, Barbanera M, Fantozzi F (2008) Environmental balance of bioethanol from corn grain: evaluation of different procedures of co-products allocation. In: 16th European Biomass Conference & Exhibition, 2-6 June 2008, Valencia, Spain. Perugia

  14. Cheng M, Huang H, Dien BS, Singh V (2019) The costs of sugar production from different feedstocks and processing technologies. Biofuels Bioprod Biorefin 13:1–17. https://doi.org/10.1002/bbb.1976

    CAS  Article  Google Scholar 

  15. Collins SRA, Wellner N, Bordonado IM et al (2014) Variation in the chemical composition of wheat straw—the role of tissue ratio and composition. Biotechnol Biofuels 7:1–14

    Article  Google Scholar 

  16. Comité Européen des Fabricants de Sucre (2016) Facts about sugars

  17. Draycott AP (2006) Sugar Beet. Blackwell Publishing

  18. Duraisam R, Salelgn K, Berekete AK (2017) Production of beet sugar and bio-ethanol from sugar beet and it bagasse: a review. Int J Eng Trends Technol 43:222–233. https://doi.org/10.14445/22315381/IJETT-V43P237

    Article  Google Scholar 

  19. European Commission (2018) Sugar Market situation

  20. European Commission (2017) PEFCR Guidance document, - Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.3

  21. Fallahpour F, Aminghafouri A, Ghalegolab Behbahani A, Bannayan M (2012) The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ Dev Sustain 14:979–992. https://doi.org/10.1007/s10668-012-9367-3

    Article  Google Scholar 

  22. Fantin V, Righi S, Rondini I, Masoni P (2017) Environmental assessment of wheat and maize production in an Italian farmers’ cooperative. J Clean Prod 140:631–643. https://doi.org/10.1016/j.jclepro.2016.06.136

    Article  Google Scholar 

  23. FAO (2017) FAOSTAT statistics database

  24. FAOSTAT (2017) Crop statistics

  25. Global Footprint Network (2018) Earth Overshoot Day. www.footprintnetwork.org. Accessed 22 Jan 2021

  26. González-García S, Berg S, Feijoo G, Moreira MT (2009a) Comparative environmental assessment of wood transport models. A case study of a Swedish pulp mill. Sci Total Environ 407:3530–3539. https://doi.org/10.1016/j.scitotenv.2009.02.022

    CAS  Article  Google Scholar 

  27. González-García S, Berg S, Feijoo G, Moreira MT (2009b) Environmental impacts of forest production and supply of pulpwood: Spanish and Swedish case studies. Int J Life Cycle Assess 14:340–353. https://doi.org/10.1007/s11367-009-0089-1

    CAS  Article  Google Scholar 

  28. González-García S, Gasol CM, Gabarrell X, Rieradevall J, Moreira MT, Feijoo G (2010) Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe. Renew Energy 35:1014–1023. https://doi.org/10.1016/j.renene.2009.10.029

    CAS  Article  Google Scholar 

  29. González-García S, Moreira MT, Feijoo G, Murphy RJ (2012) Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust , eucalyptus and poplar). Biomass Bioenergy 39:378–388. https://doi.org/10.1016/j.biombioe.2012.01.028

    CAS  Article  Google Scholar 

  30. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809. https://doi.org/10.1016/j.enpol.2012.10.046

    CAS  Article  Google Scholar 

  31. Huijbregts MAJ, Steinmann ZJN, Elshout PMF et al (2016) ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level. Bilthoven, The Netherlands

    Google Scholar 

  32. Hurmekoski E, Jonsson R, Korhonen J, Jänis J, Mäkinen M, Leskinen P, Hetemäki L (2018) Diversification of the forest industries: role of new wood-based products. Can J For Res 1432:cjfr-2018–cjfr-0116. https://doi.org/10.1139/cjfr-2018-0116

    Article  Google Scholar 

  33. Iizumi T, Ramankutty N (2015) How do weather and climate in fl uence cropping area and intensity? Glob Food Sec 4:46–50. https://doi.org/10.1016/j.gfs.2014.11.003

    Article  Google Scholar 

  34. ISO 14040 (2006) Environmental management — Life Cycle Assessment — Principles and Framework

  35. ISO 14044 (2006) Environmental management — Life Cycle Assessment — Requirements and guidelines

  36. Jóhannesson SE, Davíðsdóttir B, Heinonen JT (2018) Standard ecological footprint method for small, highly specialized economies. Ecol Econ 146:370–380. https://doi.org/10.1016/j.ecolecon.2017.11.034

    Article  Google Scholar 

  37. Kamm B, Patrick RG, Michael K (2016) Biorefineries—industrial processes and products. Ullmann’s Encycl Ind Chem:1–38. https://doi.org/10.1002/14356007.l04_l01.pub2

  38. Kathage J, Gómez-barbero M, Rodríguez-cerezo E (2016) Framework for assessing the socio-economic impacts of Bt maize cultivation

  39. Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Biorefinery 3:199–212. https://doi.org/10.1007/s13399-013-0074-6

    CAS  Article  Google Scholar 

  40. Klenk I, Landquist B, de Imana OR (2012) The Product carbon footprint of EU beet sugar. Sugar Ind J 137:169–177

    Article  Google Scholar 

  41. Kuka E, Cirule D, Andersone I, Miklasevics Z, Andersons B (2020) Life cycle inventory for currently harvested birch roundwood. Eur J Wood Wood Prod 78:859–870. https://doi.org/10.1007/s00107-020-01544-7

    CAS  Article  Google Scholar 

  42. Kuka E, Cirule D, Andersone I, Miklasevics Z, Andersons B (2019) Life cycle inventory for currently produced pine roundwood. J Clean Prod 235:613–625. https://doi.org/10.1016/j.jclepro.2019.07.004

    Article  Google Scholar 

  43. Kuo PC, Yu J (2020) Process simulation and techno-economic analysis for production of industrial sugars from lignocellulosic biomass. Ind Crop Prod 155:112783. https://doi.org/10.1016/j.indcrop.2020.112783

    CAS  Article  Google Scholar 

  44. Liao Y, Koelewijn SF, van den Bossche G, van Aelst J, van den Bosch S, Renders T, Navare K, Nicolaï T, van Aelst K, Maesen M, Matsushima H, Thevelein JM, van Acker K, Lagrain B, Verboekend D, Sels BF (2020) A sustainable wood biorefinery for low-carbon footprint chemicals production. Science (80) 367:1385–1390. https://doi.org/10.1126/science.aau1567

    CAS  Article  Google Scholar 

  45. Mesfun S, Matsakas L, Rova U, Christakopoulos P (2019) Technoeconomic assessment of hybrid organosolv-steam explosion pretreatment of woody biomass. Energies 12:4206. https://doi.org/10.3390/en12214206

    CAS  Article  Google Scholar 

  46. Modahl IS, Brekke A, Valente C (2015) Environmental assessment of chemical products from a Norwegian biorefinery. J Clean Prod 94:247–259. https://doi.org/10.1016/j.jclepro.2015.01.054

    CAS  Article  Google Scholar 

  47. Moncada J, Vural I, Huijgen WJJ et al (2018) Techno-economic and ex-ante environmental assessment of C6 sugars production from spruce and corn. Comparison of organosolv and wet milling technologies. J Clean Prod 170:610–624. https://doi.org/10.1016/j.jclepro.2017.09.195

    CAS  Article  Google Scholar 

  48. Morales M, Pielhop T, Saliba P, Hungerbühler K, Rudolf von Rohr P, Papadokonstantakis S (2017) Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels Bioprod Biorefin 11:441–453. https://doi.org/10.1002/bbb

    CAS  Article  Google Scholar 

  49. Morales M, Quintero J, Conejeros R, Aroca G (2015) Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sust Energ Rev 42:1349–1361. https://doi.org/10.1016/J.RSER.2014.10.097

    CAS  Article  Google Scholar 

  50. Mountraki AD, Koutsospyros KR, Mlayah BB, Kokossis AC (2017) Selection of biorefinery routes: the case of xylitol and its integration with an organosolv process. Waste Biomass Valorization 8:2283–2300. https://doi.org/10.1007/s12649-016-9814-8

    CAS  Article  Google Scholar 

  51. Muñoz I, Flury K, Jungbluth N, Rigarlsford G, i Canals LM, King H (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19:109–119. https://doi.org/10.1007/s11367-013-0613-1

    CAS  Article  Google Scholar 

  52. Muradov NZ, Veziroǧlu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrog Energy 33:6804–6839. https://doi.org/10.1016/j.ijhydene.2008.08.054

    CAS  Article  Google Scholar 

  53. Mustafa M, Misailidis N, Mateos-Salvador F, et al (2007) Feasibility of co-producing arabinoxylans and ethanol in a wheat biorefinery. United Kingdom

  54. Noya I, González-García S, Bacenetti J et al (2015) Comparative life cycle assessment of three representative feed cereals production in the Po Valley (Italy). J Clean Prod 99:250–265. https://doi.org/10.1016/j.jclepro.2015.03.001

    CAS  Article  Google Scholar 

  55. OECD (2003) Consensus document on compositional considerations for new varieties of bread wheat of bread wheat (Triticum aestivum): key food and feed nutrients, anti-nutrients and toxicants. In: Series on the Safety of Novel Foods and Feeds

  56. Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C (2015) The new assessment of soil loss by water erosion in Europe. Environ Sci Pol 54:438–447. https://doi.org/10.1016/j.envsci.2015.08.012

    Article  Google Scholar 

  57. Parajuli R, Knudsen MT, Birkved M, Djomo SN, Corona A, Dalgaard T (2017) Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach. Sci Total Environ 598:497–512. https://doi.org/10.1016/j.scitotenv.2017.04.087

    CAS  Article  Google Scholar 

  58. Raman JK, Gnansounou E (2015) LCA of bioethanol and furfural production from vetiver. Bioresour Technol 185:202–210. https://doi.org/10.1016/j.biortech.2015.02.096

    CAS  Article  Google Scholar 

  59. Renouf MA, Wegener MK, Nielsen LK (2008) An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 32:1144–1155. https://doi.org/10.1016/j.biombioe.2008.02.012

    CAS  Article  Google Scholar 

  60. Righi S, Morfino A, Galletti P, Samorì C, Tugnoli A, Stramigioli C (2011) Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem 13:367–375. https://doi.org/10.1039/c0gc00647e

    CAS  Article  Google Scholar 

  61. Salim I, González-García S, Feijoo G, Moreira MT (2019) Assessing the environmental sustainability of glucose from wheat as a fermentation feedstock. J Environ Manag 247:323–332. https://doi.org/10.1016/j.jenvman.2019.06.016

    CAS  Article  Google Scholar 

  62. Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012. https://doi.org/10.1016/j.biortech.2009.11.062

    CAS  Article  Google Scholar 

  63. Snowden-Swan LJ, Spies KA, Lee GJ, Zhu Y (2016) Life cycle greenhouse gas emissions analysis of catalysts for hydrotreating of fast pyrolysis bio-oil. Biomass Bioenergy 86:136–145. https://doi.org/10.1016/j.biombioe.2016.01.019

    CAS  Article  Google Scholar 

  64. Svatoŝ M, Maitah M, Belova A (2013) World sugar market-basic development trends and tendencies. Agris On-line Pap Econ Informatics 5:73–88

    Google Scholar 

  65. Tenorio AT (2017) Sugar beet leaves for functional ingredients. Wageningen University, Wageningen

    Google Scholar 

  66. Tomaszewska J, Bieliński D, Binczarski M, Berlowska J, Dziugan P, Piotrowski J, Stanishevsky A, Witońska IA (2018) Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv 8:3161–3177. https://doi.org/10.1039/C7RA12782K

    CAS  Article  Google Scholar 

  67. Toppinen A, Pätäri S, Tuppura A, Jantunen A (2017) The European pulp and paper industry in transition to a bio-economy : a Delphi study. Futures 88:1–14. https://doi.org/10.1016/j.futures.2017.02.002

    Article  Google Scholar 

  68. Tschulkow M, Compernolle T, Van den Bosch S et al (2020) Integrated techno-economic assessment of a biorefinery process: the high-end valorization of the lignocellulosic fraction in wood streams. J Clean Prod 266:122022. https://doi.org/10.1016/j.jclepro.2020.122022

    CAS  Article  Google Scholar 

  69. Tsiropoulos I, Cok B, Patel MK (2013) Energy and greenhouse gas assessment of European glucose production from corn-a multiple allocation approach for a key ingredient of the bio-based economy. J Clean Prod 43:182–190. https://doi.org/10.1016/j.jclepro.2012.12.035

  70. Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N, Norgaard R, Randers J (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci 99:9266–9271. https://doi.org/10.1073/pnas.142033699

    CAS  Article  Google Scholar 

  71. Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  72. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68. https://doi.org/10.3965/j.issn.1934-6344.2009.03.051-068

    CAS  Article  Google Scholar 

Download references

Funding

This contribution was supported by the European project iFermenter (Grant Agreement 790507) and the European project STARProBio (Grant Agreement Number 727740). The authors belong to the Galician Competitive Research Group GRC ED431C 2017/29 and to the Cross-disciplinary Research in Environmental Technologies (CRETUS Research Center). All these programmes are co-funded by FEDER (EU).

Author information

Affiliations

Authors

Contributions

SB: conceptualization, formal analysis, investigation, methodology, writing - original draft, writing review & editing, visualization. IS: investigation, methodology, validation. GF: validation, writing - review & editing, supervision. MTM: conceptualization, validation, writing - review & editing, supervision.

Corresponding author

Correspondence to Sara Bello.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Loubet

Supplementary Information

ESM 1

(PDF 828 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bello, S., Salim, I., Feijoo, G. et al. Inventory review and environmental evaluation of first- and second-generation sugars through life cycle assessment. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12405-y

Download citation

Keywords

  • Lignocellulosic biomass
  • First-generation crops
  • Second-generation crops
  • Biorefinery
  • Life cycle assessment
  • Sugars