Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators

Abstract

The petroleum ether crude extracts of A. conyzoides (Pe-Ac) were used to treat three medically intimidating pests of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, to evaluate their non-target screening against the mosquito predator. The chemical scanning of Pe-Ac through GC-MS analysis revealed a total of nine compounds and the maximum peak area was observed in 1,5-Heptadien-3-yne (22.14%). At the maximum dosage of Pe-Ac (200 ppm), significant larvicidal activity was shown against the fourth instars of Ae. aegypti (96%), An. stephensi (93%), and Cx. quinquefasciatus (92%) respectively. The percentages of oviposition deterrence index (ODI) of all three mosquito vectors are maximum at the highest sub-lethal dosage of Pe-Ac (75 ppm) and minimum at the control dosage. The sub-lethal dosage blocked the activity of carboxylesterase activity and upregulated the detoxifying enzyme activity in a dose-dependent way. The adulticidal activity of Pe-Ac showed that the maximum adult mortality rate (100%) was recorded at the prominent dosage of Pe-Ac 600 ppm against the vectors of all three mosquitos at the maximum adulticidal time of 30 min. Histopathological investigation of fourth instar larvae of all three mosquitos treated with a sub-lethal dosage of Pe-Ac showed that the midgut cells (epithelium, lumen, and peritrophic matrix) are ruptured completely whereas they appear to be normal in control larvae. The non-toxicity evaluation of Pe-Ac compared with the chemical toxin Temephos in aquatic predator Toxorhynchites splendens revealed that the plant extracts are harmless even at the prominent dosage (1000 ppm) as compared to Temephos (1 and 2 ppm) and displayed a higher mortality rate against the mosquito predators. Thus the safety index recommends that the Pe-Ac is more explicit to targets and a suitable auxiliary to chemical pesticides.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data available

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Article  Google Scholar 

  2. Adebayo AH, Tan NH, Akindahunsi AA, Zeng GZ, Zhang YM (2010) Anticancer and antiradical scavenging activity of Ageratum conyzoides L. (Asteraceae). Phcog Mag 6(21):62–66

    CAS  Article  Google Scholar 

  3. Atanasova DI, Ganchev DH, Marinova PE, Stoyanov NM, Prodanova RY, Krustev SV, Marinov MN (2014) In vitro screening for insecticidal activity of cyclopentanespiro-5-hydantoin and its four derivatives against potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Agri and Food 2:338–345

    Google Scholar 

  4. Baskar K, Mohankumar S, Sudha V, Maheswaran R, Vijayalakshmi S et al (2016) Meliaceae plant extracts as potential mosquitocides — a review. Entomol Ornithol Herpetol 5:172. https://doi.org/10.4172/2161-0983.1000172

    Article  Google Scholar 

  5. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805

    Article  Google Scholar 

  6. Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96

    Article  Google Scholar 

  7. Benelli G, Buttazzoni L, Canale A, D’Andrea A, Del Serrone P, Delrio G, Foxi C, Mariani S, Savini G, Vadivalagan C, Murugan K, Toniolo C, Nicoletti M, Serafini M (2017) Bluetongue outbreaks: looking for effective control strategies against Culicoides vectors. Res Vet Sci 115:263–270

    Article  Google Scholar 

  8. Benelli G, Duggan MF (2018) Management of arthropod vector data? Social and ecological dynamics facing the one health perspective. Acta Trop 182:80–91. https://doi.org/10.1016/j.actatropica.2018.02.015

    Article  Google Scholar 

  9. Benelli G, Pavela R (2018) Beyond mosquitoes—essential oil toxicity and repellency against bloodsucking insects. Ind Crop Prod 117:382–392

    CAS  Article  Google Scholar 

  10. Bouda H, Tapondjou LA, Fontem DA, Gumedzoe MYD (2001) Effect of essential oils from leaves of Ageratum conyzoides, Lantana camara and Chromolaena odorata on the mortality of Sitophilus zeamais (Coleoptera, Curculionidae). J Stored Prod Res 37:103–109

    CAS  Article  Google Scholar 

  11. Bowers WS, Ohta T, Cleeve JS, Marsella P (1976) Discovery of insect anti-juvenile hormones in plants. Science 193:542–547

    CAS  Article  Google Scholar 

  12. Cheah S, Tay J, Chan L, Jaal Z (2013) Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 112:3275–3282

    Article  Google Scholar 

  13. Cheng S, Huang C, Chen Y, Yu J, Chen W, Chang S (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol 100:452–456

    CAS  Article  Google Scholar 

  14. Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin E, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G (2017) Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ Pollut Res 25:10294–10306

    Article  CAS  Google Scholar 

  15. Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB (2018) Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ Int 2018:214–230

    Article  CAS  Google Scholar 

  16. Coelho JS, Santos NDL, Napoleao TH, Gomes FS, Ferreira RS, Zingali RB, Coelho LCBB, Leite SP, Navarro DMAF, Paiva PMG (2009) Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere 77:934–938

    CAS  Article  Google Scholar 

  17. Dias CN, Moraes DFC (2014) Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol Res 113:565–592

    Article  Google Scholar 

  18. Dinesh-Kumar A, Sriman E, Chellappandian M, Vasantha-Srinivasn P, Karthi S, Thanigaivel A, Ponsankar A, Chanthini KM, Shyam-Sundar N, Annamalai M, Kalaivani K, Hunter WB, Senthil-Nathan S (2018) Target and non-target response of Swietenia Mahagoni Jacq. Chemical constituents against tobacco cutworm Spodoptera litura fab. and earthworm, Eudrilus eugeniae Kinb. Chemosphere 199:35–43

    CAS  Article  Google Scholar 

  19. Edwin E, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V, Al-Dhabi NA (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167–178

    CAS  Article  Google Scholar 

  20. Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  21. Gahukar RT (2012) Evaluation of plant-derived products against pests and diseases of medicinal plants: a review. Crop Prot 42:202–209

    CAS  Article  Google Scholar 

  22. Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135:581–598

    CAS  Google Scholar 

  23. Govindarajan M, Rajeswary M, Benelli G (2016) Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: an eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf 129:85–90

    CAS  Article  Google Scholar 

  24. Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    Article  Google Scholar 

  25. Idris A, Aliyu AB, Oyewale AO (2019) Phytochemical screening and antibacterial activity of Centaurea senegalensis growing in Nigeria. J Appl Sci Environ Manag 23:1087–1092

    CAS  Google Scholar 

  26. Kabir KE, Choudhary MI, Ahmed S, Tariq RM (2013) Growth-disrupting, larvicidal and neurobehavioral toxicity effects of seed extract of Seseli diffusum against Aedes aegypti (L.) (Diptera: Culicidae). Ecotoxicol Environ Saf 90:52–60

    CAS  Article  Google Scholar 

  27. Kamboj A, Saluja AK (2011) Isolation of stigmasterol and β sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae). Inter J Pharm Pharmaceut Sci 3(1):94–96

    CAS  Google Scholar 

  28. Karthi S, Senthil-Nathan S, Kalaivani K, Vasantha-Srinivasan P, Chellappandian M, Thanigaivel A, Ponsankar A, Sivanesh H, Stanley-Raja V, Chanthini KM, Shyam-Sundar N (2019) Comparative efficacy of two mycotoxins against Spodoptera litura fab. and their nontarget activity against Eudrilus eugeniae Kinb. Eco Toxicol Environ Saf 183:109474

    CAS  Article  Google Scholar 

  29. Kong CH (2006) Allelochemicals from Ageratum conyzoides L. and Oryza sativa L. and their effects on related pathogens. In: Inderjit X, Mukerji KG (eds.) Allelo-chemicals: biological control of plant pathogens and diseases. Springer, Netherlands, pp 193–196

    Google Scholar 

  30. Kong CH (2010) Ecological pest management and control by using allelopathic weeds (Ageratum conyzoides, Ambrosia trifida, and Lantana camara) and their allelochemicals in China. Weed Biol Manag 10:73–80

    CAS  Article  Google Scholar 

  31. Lija-Escaline J, Senthil-Nathan S, Thanigaivel A, Pradeepa V, Vasantha-Srinivasan P, Ponsankar A, Edwin E, Selin-Rani S, Abdel-Megeed A (2015) Physiological and biochemical effects of chemical constituents from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol Res 114(11):4239–4249

    Article  Google Scholar 

  32. Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 110:1801–1813

    Article  Google Scholar 

  33. Marcombe S, Mathieu RB, Pocquet N, Riaz MA, Poupardin R, Sélior S (2012) Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS One 7(2):e30989

    CAS  Article  Google Scholar 

  34. McArthur MA, Sztein MB, Edelman R (2013) Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert Rev Vaccines 12:933–953

    CAS  Article  Google Scholar 

  35. Ming LC (1999) Ageratum conyzoides: a tropical source of medicinal and agricultural products. In: Janik J (ed.) Perspectives on new crops and new uses. ASHS Press, Alexandria VA, USA, pp 470–473

    Google Scholar 

  36. Moreira MD, Picanco MC, Barbosa LCA, Guedes RNC, Barros EC, Campos MR (2007) Compounds from Ageratum conyzoides: isolation, structural elucidation and insecticidal activity. Pest Manag Sci 63:615–621

    CAS  Article  Google Scholar 

  37. Napoleão TH, Pontual EV, Lima TA, Santos NDL, Sá RA, Coelho LCBB, Navarro DMAF, Paiva PMG (2012) Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 110:609–616

    Article  Google Scholar 

  38. Okunade AL (2002) Ageratum conyzoides L. (Asteraceae). Fitoterapia 73:1–16

    CAS  Article  Google Scholar 

  39. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187

    CAS  Article  Google Scholar 

  40. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, van der Sluijs JP, van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102

    CAS  Article  Google Scholar 

  41. Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin E, Selin-Rani S, Kalaivani K, Hunter WB, Alessandro RT, Abel-Megeed A, Paik C, Duraipandiyan V, Al-Dhabi NA (2016) Target and non-target toxicity of botanical insecticide derived from Couroptia guianensis L. flower against generalist herbivore, Spodoptera litura fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol Environ Saf 133:260–270

    CAS  Article  Google Scholar 

  42. Ramkumar G, Karthi S, Muthusamy R, Natarajan D, Shivakumar MS (2015) Adulticidal and smoke toxicity of Cipadessa baccifera (Roth) plant extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Parasitol Res 114:167–173

    Article  Google Scholar 

  43. Ravindran J, Samuel T, Alex E, William J (2012) Adulticidal activity of Ageratum houstonianum mill. (Asteraceae) leaf extracts against three vector mosquito species (Diptera: Culicidae). Asian Pac J Trop Dis:177–179

  44. Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    CAS  Article  Google Scholar 

  45. Rehman JU, Ali A, Khan IA (2014) Plant based products: use and development as repellents against mosquitoes: a review. Fitoterapia 95:65–74

    CAS  Article  Google Scholar 

  46. Selin-Rani S, Senthil-Nathan S, Thanigaivel A, Vasantha-Srinivasan P, Edwin E, Ponsankar A, Lija-Escaline J, Kalaivani K, Abdel-Megeed A, Hunter WB, Alessandro RT (2016) Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab and a non-target earthworm Eisenia fetida. Savigny Chemosphere 165:257–267

    CAS  Article  Google Scholar 

  47. Senthil-Nathan S (2013) Physiological and biochemical effect of Neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 4(359):1–17

    Google Scholar 

  48. Senthil-Nathan S (2015) A review of bio pesticides and their mode of action against insect pests. In: Thangavel P, Sridevi G (Eds.)Environmental sustainability — role of green technologies. Springer, Heidelberg, pp 49–63

    Google Scholar 

  49. Senthil-Nathan S, Choi MY, Paik CH, Seo HY (2007) Food consumption, utilization, and detoxification enzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. Pest Biochem Physiol 88(3):260–267

    Article  CAS  Google Scholar 

  50. Senthil-Nathan S, Kalaivani K, Murugan K (2005) Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55

    Article  CAS  Google Scholar 

  51. Senthil-Nathan S, Kalaivani K, Sehoon K (2006a) Effects of Dysoxylum malabaricum Bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 97:2077–2083

    Article  CAS  Google Scholar 

  52. Senthil-Nathan S, Kalaivani K, Sehoon K, Murugan K (2006b) The toxicity and behavioural effects of neem limonoids on Cnaphalocrocis medinalis (Guene’e), the rice leaffolder. Chemosphere 62:1381–1387

    CAS  Article  Google Scholar 

  53. Shaalan EAS, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour AH (2006) Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed 23:180–185

    Google Scholar 

  54. Shaalan EAS, Canyon DV, Younes MWF, Abdel-Wahab H, Mansour A (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    CAS  Article  Google Scholar 

  55. Sibley PK, Chappel MC, George T, Solomon KR, Liber KL (2000) Integrating effects across levels of biological organization: examples using organophosphorus insecticide mixtures in field-level exposures. J Aquat Ecosyst Stress Recov 7:117–130

    CAS  Article  Google Scholar 

  56. Soonwera M (2015) Efficacy of essential oil from Cananga odorata (Lamk.) Hook. f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res 114(12):4531–4543

    Article  Google Scholar 

  57. Su T, Mulla MS (1999) Oviposition bioassay responses of Culex tarsalis and Culex quinquefasciatus to neem products containing azadirachtin. Entomol Exp Appl 91:337–345

    CAS  Article  Google Scholar 

  58. Thanigaivel A, Chandrasekaran R, Revathi K, Nisha S, Sathish-Narayanan S, Kirubakaran SA, Senthil-Nathan S (2012) Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition. Parasitol Res 110:1993–1999

    Article  Google Scholar 

  59. Thanigaivel A, Senthil-Nathan S, Vasantha-Srinivasan P et al (2017) Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito Aedes aegypti L. Arch Insect Biochem Physiol 00:e21384. https://doi.org/10.1002/arch.21384

    CAS  Article  Google Scholar 

  60. Thanigaivel A, Vasantha-Srinivasan P, Senthil-Nathan S, Edwin E, Ponsankar A, Chellappandian M, Selin-Rani S, Lija-Escaline J, Kalaivani K (2016) Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2016.11.004

  61. Umpiérrez MR, Lagreca ME, Cabrera R, Grille G, Rossini C (2012) Essential oils from Asteraceae as potential biocontrol tools for tomato pests and diseases. Phytochem Rev 11:339–350

    Article  CAS  Google Scholar 

  62. Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin E, Ponsankar A, Selin-Rani S, Pradeepa V, Sakthi-Bhagavathy M, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA (2016) Developmental response of Spodoptera litura fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb. Chemosphere 155:336–347

    CAS  Article  Google Scholar 

  63. Waka M, Hopkins RJ, Curtis C (2004) Ethnobotanical survey and testing of plants traditionally used against hematophagous insects in Eritrea. J Ethno Pharmacol 95:95–101

    Article  Google Scholar 

  64. World Health Organization (1981) Instruction for determining the susceptibility or resistance of mosquito larvae to insecticides. Document No. WHO/VBC/81.807. World Health Organization, Geneva

    Google Scholar 

  65. World Health Organization (2012) Dengue and severe dengue [factsheet no. 117, revised January 2012]. World Health Organization, Geneva. (Also available at: http://www.who.int/mediacentre/ factsheets/fs117/en/; accessed April 2012)

  66. Zuharah WF, Fadzly N, Yusof NA, Deing H (2015) Risky behaviors: effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species. J Insect Sci 15(1):128. https://doi.org/10.1093/jisesa/iev115

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Department of Zoology, J.K.K. Nataraja College of Arts and Science for carrying out this research work.This research work was also partially supported by Chiang Mai University.

Funding

This research was partially funded by the Post-Doctoral Program, Chiang Mai University, Thailand.

Author information

Affiliations

Authors

Contributions

Authors contributions: VR, SK, RG, and PP designed the research plan and drafted the manuscript. VR, PV, and SK performed the experimental work and data compilation. PV, SU, and SK coordinated the work and discussed the results. SS, SU, and PK revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Subramaniam Umavathi or Patcharin Krutmuang or Prabhakaran Vasantha-Srinivasan.

Ethics declarations

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent to publish

Not Applicable.

Competing interests

The Authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, V., Karthi, S., Ganesan, R. et al. Chemical characterization of billy goat weed extracts Ageratum conyzoides (Asteraceae) and their mosquitocidal activity against three blood-sucking pests and their non-toxicity against aquatic predators. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12362-6

Download citation

Keywords

  • Asteraceae
  • Arthropods
  • GST
  • Oviposition
  • Gut-lumen
  • Predator