Optical detection of microplastics in water

Abstract

Unfortunately, the plastic pollution increases at an exponential rate and drastically endangers the marine ecosystem. According to World Health Organization (WHO), microplastics in drinking water have become a concern and may be a risk to human health. One of the major efforts to fight against this problem is developing easy-to-use, low-cost, portable microplastic detection systems. To address this issue, here, we present our prototype device based on an optical system that can help detect the microplastics in water. This system that costs less than $370 is essentially a low-cost Raman spectrometer. It includes a collimated laser (5 mW), a sample holder, a notch filter, a diffraction grating, and a CCD sensor all integrated in a 3D printed case. Our experiments show that our system is capable of detecting microplastics in water having a concentration less than 0.015% w/v. We believe that the designed portable device can find a widespread use all over the world to monitor the microplastic content in an easier and cost-effective manner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All relevant data are within the manuscript and available from the corresponding author upon request.

References

  1. Anger PM, von der Esch E, Baumann T, Elsner M, Niessner R, Ivleva NP (2018) Raman microspectroscopy as a tool for microplastic particle analysis. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2018.10.010

  2. Asamoah BO, Kanyathare B, Roussey M, Peiponen KE (2019) A prototype of a portable optical sensor for the detection of transparent and translucent microplastics in freshwater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.05.114

  3. Aydogan O, Tasal E (2018) Designing and building a 3D printed low cost modular Raman spectrometer. CERN IdeaSquare J Exp Innov 2(2):3–12. https://doi.org/10.23726/cij.2018.799

    Article  Google Scholar 

  4. Beganovic A, Hawthorne LM, Bach K, Huck CW (2019) Critical review on the utilization of handheld and portable Raman spectrometry in meat science. Foods. 8. https://doi.org/10.3390/foods8020049

  5. Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17041212

  6. Dietzek B, Cialla D, Schmitt M, Popp J (2010) Introduction to the fundamentals of Raman spectroscopy. Springer, Berlin, pp 21–42. https://doi.org/10.1007/978-3-642-12522-5_2

    Google Scholar 

  7. Du Z, Chen J, Ye W, Guo J, Zhang X, Zheng R (2015) Investigation of two novel approaches for detection of sulfate ion and methane dissolved in sediment pore water using Raman spectroscopy. Sensors (Switzerland) 15:12377–12388. https://doi.org/10.3390/s150612377

    CAS  Article  Google Scholar 

  8. Espinosa C, Beltrán JMG, Esteban MA, Cuesta A (2018) In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ Pollut 235:30–38. https://doi.org/10.1016/j.envpol.2017.12.054

    CAS  Article  Google Scholar 

  9. Galloway TS (2015) Micro- and nano-plastics and human health. Mar Anthropogenic Litter. https://doi.org/10.1007/978-3-319-16510-3_13

  10. Horton AA, Dixon SJ (2018) Microplastics: an introduction to environmental transport processes. Wiley Interdiscip Rev Water 5. https://doi.org/10.1002/wat2.1268

  11. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science. 347:768–771. https://doi.org/10.1126/science.1260352

    CAS  Article  Google Scholar 

  12. Jehlička J, Culka A, Vandenabeele P, Edwards HGM (2011) Critical evaluation of a handheld Raman spectrometer with near infrared (785 nm) excitation for field identification of minerals. Spectrochim Acta A Mol Biomol Spectrosc 80:36–40. https://doi.org/10.1016/j.saa.2011.01.005

    CAS  Article  Google Scholar 

  13. Kniggendorf AK, Wetzel C, Roth B (2019) Microplastics detection in streaming tap water with raman spectroscopy. Sensors (Switzerland). https://doi.org/10.3390/s19081839

  14. Krimmer M, Farber C, Kurouski D (2019) Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer. ACS Omega 4:16330–16335. https://doi.org/10.1021/acsomega.9b01661

    CAS  Article  Google Scholar 

  15. Lebreton L, Egger M, Slat B (2019) A global mass budget for positively buoyant macroplastic debris in the ocean. Sci Rep 9:12922. https://doi.org/10.1038/s41598-019-49413-5

    CAS  Article  Google Scholar 

  16. Lupoi JS, Gjersing E, Davis MF (2015) Evaluating Lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy. Front Bioeng Biotechnol 3. https://doi.org/10.3389/fbioe.2015.00050

  17. Mintenig SM, Löder MGJ, Primpke S, Gerdts G (2019) Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.08.178

  18. Moore DS, Scharff RJ (2009) Portable Raman explosives detection. Anal Bioanal Chem 393:1571–1578. https://doi.org/10.1007/s00216-008-2499-5

    CAS  Article  Google Scholar 

  19. Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    CAS  Article  Google Scholar 

  20. Owens NA, Laurentius LB, Porter MD, Li Q, Wang S, Chatterjee D (2018) Handheld Raman spectrometer instrumentation for quantitative tuberculosis biomarker detection: a performance assessment for point-of-need infectious disease diagnostics. Appl Spectrosc 72:1104–1115. https://doi.org/10.1177/0003702818770666

    CAS  Article  Google Scholar 

  21. Pozzi F, Basso E, Rizzo A, Cesaratto A, Tague TJ (2019) Evaluation and optimization of the potential of a handheld Raman spectrometer: in situ, noninvasive materials characterization in artworks. J Raman Spectrosc. https://doi.org/10.1002/jrs.5585

  22. Santillán JMJ, Arboleda DM, Coral DF, Fernández van Raap MB, Muraca D, Schinca DC, Scaffardi LB (2017) Optical and magnetic properties of Fe nanoparticles fabricated by femtosecond laser ablation in organic and inorganic solvents. Chemphyschem 18:1192–1209. https://doi.org/10.1002/cphc.201601279

    CAS  Article  Google Scholar 

  23. Serafim A, Mallet R, Pascaretti-Grizon F, Stancu IC, Chappard D (2014) Osteoblast-like cell behavior on porous scaffolds based on poly(styrene) fibers. Biomed Res Int 2014:1–6. https://doi.org/10.1155/2014/609319

    Article  Google Scholar 

  24. Stewart SP, Bell SEJ, McAuley D, Baird I, Speers SJ, Kee G (2012) Determination of hydrogen peroxide concentration using a handheld Raman spectrometer: detection of an explosives precursor. Forensic Sci Int 216:e5–e8. https://doi.org/10.1016/j.forsciint.2011.08.002

    CAS  Article  Google Scholar 

  25. Vargas Jentzsch P, Gualpa F, Ramos LA, Ciobotă V (2018) Adulteration of clove essential oil: detection using a handheld Raman spectrometer. Flavour Fragrance J 33:184–190. https://doi.org/10.1002/ffj.3438

    CAS  Article  Google Scholar 

  26. Zheng J, Pang S, Labuza TP, He L (2014) Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: a comparative study. Talanta. 129:79–85. https://doi.org/10.1016/j.talanta.2014.05.015

    CAS  Article  Google Scholar 

Download references

Funding

Authors acknowledge the TÜBİTAK 1512 Program (Project No.: 2180145) for financial support.

Author information

Affiliations

Authors

Contributions

K.I. and T.E. conceptualized and designed the experiments. A.H.I., M.H.A.S., A.M.A, and S.A.Q. performed the experiments. I.O., T.E., and K.I. analyzed the data. A.H.I., M.H.A.S., A.M.A, and S.A.Q made the figures. K.I., A.H.I., and T.E. wrote the paper. All the authors read and contributed to the submitted version of the manuscript. K. I. acquired the funding.

Corresponding author

Correspondence to Kutay Icoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors participated in this work.

Consent to publish

All authors agree to publish.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iri, A.H., Shahrah, M.H.A., Ali, A.M. et al. Optical detection of microplastics in water. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12358-2

Download citation

Keywords

  • Microplastic detection
  • Optical biosensor
  • Raman spectroscopy