Supercritical fluid extraction of four aromatic herbs and assessment of the volatile compositions, bioactive compounds, antibacterial, and anti-biofilm activity

Abstract

Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO2) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH and ABTS•+, antibacterial, and anti-biofilm activities of SFE-CO2 extracts. Extraction was done by SFE-CO2 with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO2 extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO2 extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Not applicable.

References

  1. Ahmed N, Aljuhani N, Salamah S, Surrati H, el-Agamy SD, Elkablawy AM, Ibrahim RMS, Mohamed AG (2018) Pulicaria petiolaris effectively attenuates lipopolysaccharide (LPS)-induced acute lung injury in mice. Arch Biol Sci 70:699–706. https://doi.org/10.2298/Abs180510033a

    Article  Google Scholar 

  2. Ajaib M, Mati-ur-Rehman A, Khan KM, Perveen S, Shah S (2015) Pulicaria undulata: a potential phytochemical, antimicrobial and antioxidant. J Chem Soc Pak 37:559–566

    CAS  Google Scholar 

  3. Al-Ansi W et al. (2019) Evaluating the role of microwave-baking and fennel (Foeniculum vulgare L.)/nigella (Nigella sativa L.) on acrylamide growth and antioxidants potential in biscuits. J. Food Meas. Charact. 13:2426–2437. https://doi.org/10.1007/s11694-019-00163-y

  4. Al-Maqtari QA, Mahdi AA, Al-Ansi W, Mohammed JK, Wei M, Yao W (2020) Evaluation of bioactive compounds and antibacterial activity of Pulicaria jaubertii extract obtained by supercritical and conventional methods. J. Food Meas. Charact. https://doi.org/10.1007/s11694-020-00652-5

  5. Ali NA et al (2012) Chemical composition and biological activity of essential oil from Pulicaria undulata from Yemen. Nat Prod Commun 7:257–260. https://doi.org/10.1177/1934578X1200700238

    CAS  Article  Google Scholar 

  6. Asfaw N, Demissew S (2015) Essential oil composition of four Artemisia species from Ethiopia. Bull Chem Soc Ethiop 29:123–128. https://doi.org/10.4314/bcse.v29i1.11

    CAS  Article  Google Scholar 

  7. Basa’ar O, Fatema S, Alrabie A, Mohsin M, Farooqui MJAPJoTB (2017) Supercritical carbon dioxide extraction of Triognella foenum graecum Linn seeds: determination of bioactive compounds and pharmacological analysis. Asian Pac J Trop Biomed 7:1085–1091. https://doi.org/10.1016/j.apjtb.2017.10.010

  8. Belayneh HD, Wehling RL, Reddy AK, Cahoon EB, Ciftci ONJJotAOCS (2017) Ethanol-modified supercritical carbon dioxide extraction of the bioactive lipid components of camelina sativa seed. J Am Oil Chem Soc 94:855–865. https://doi.org/10.1007/s11746-017-2993-z

  9. Benito-Román O, Varona S, Sanz MT, Beltrán SJJoI, Chemistry E (2019) Valorization of rice bran: modified supercritical CO2 extraction of bioactive compounds. J Ind Eng Chem 80:273–282. https://doi.org/10.1016/j.jiec.2019.08.005

  10. Biscaia D, Ferreira SRS (2009) Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J Supercrit Fluids 51:17–23. https://doi.org/10.1016/j.supflu.2009.07.011

  11. Burits M, Asres K, Bucar F (2001) The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytother Res 15:103–108. https://doi.org/10.1002/ptr.691

    CAS  Article  Google Scholar 

  12. Chakraborty S, Uppaluri R, Das C (2020) Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food Bioprod Process 120:114–122. https://doi.org/10.1016/j.fbp.2020.01.003

    CAS  Article  Google Scholar 

  13. Chen CT, Chien YH, Yu YH, Chen YW (2019) Extraction and analysis of Taiwanese green Propolis. J Visualized Exp:e58743. https://doi.org/10.3791/58743

  14. Chen W, Vermaak I, Viljoen A (2013) Camphor—a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon—a review. Molecules 18:5434–5454. https://doi.org/10.3390/molecules18055434

    CAS  Article  Google Scholar 

  15. Chirinos R, Pedreschi R, Rogez H, Larondelle Y, Campos DJIC, Products (2013) Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind Crop Prod 47:145–152. https://doi.org/10.1016/j.indcrop.2013.02.025

    CAS  Article  Google Scholar 

  16. Cruz PN, Pereira TC, Guindani C, Oliveira DA, Rossi MJ, Ferreira SRJTJoSF (2017) Antioxidant and antibacterial potential of butia (Butia catarinensis) seed extracts obtained by supercritical fluid extraction. J Supercrit Fluids 119:229–237. https://doi.org/10.1016/j.supflu.2016.09.022

  17. Cvjetko Bubalo M, Vidović S, Radojčić Redovniković I, Jokić S (2018) New perspective in extraction of plant biologically active compounds by green solvents food bioprod. Process. 109:52–73. https://doi.org/10.1016/j.fbp.2018.03.001

    CAS  Article  Google Scholar 

  18. Dubaie A, Al-Khulaidi AJFR (1993) Studies on the flora of Yemen on the flora of Tihama plain with one figure. Feddes Repert 104:259–265. https://doi.org/10.1002/fedr.19931040318

    Article  Google Scholar 

  19. Elshamy AI, Mohamed TA, Marzouk MM, Hussien TA, Umeyama A, Hegazy MEF, Efferth T (2018) Phytochemical constituents and chemosystematic significance of Pulicaria jaubertii E. Gamal-Eldin (Asteraceae) Phytochem Lett 24:105–109. https://doi.org/10.1016/j.phytol.2018.01.021

    CAS  Article  Google Scholar 

  20. Essien SO, Young B, Baroutian S (2020) Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci Tech 97:156–169. https://doi.org/10.1016/j.tifs.2020.01.014

    CAS  Article  Google Scholar 

  21. Fadel H, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Jiménez IA, Lorenzo-Morales J, Ghedadba N, Benayache S, Piñero JE, Bazzocchi IL (2019) Antioxidant and leishmanicidal evaluation of Pulicaria inuloides root extracts: a bioguided fractionation. Pathogens 8:201. https://doi.org/10.3390/pathogens8040201

    CAS  Article  Google Scholar 

  22. Fawzy GA, Al Ati HY, El Gamal AA (2013) Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Pharmacogn Mag 9:28–32. https://doi.org/10.4103/0973-1296.108133

    CAS  Article  Google Scholar 

  23. Foddai M, Marchetti M, Ruggero A, Juliano C, Usai M (2019) Evaluation of chemical composition and anti-inflammatory, antioxidant, antibacterial activity of essential oil of Sardinian Santolina corsica Jord. & Fourr. Saudi J. Biol Sci 26:930–937. https://doi.org/10.1016/j.sjbs.2018.08.001

  24. Gao ZP, Zhong WM, Chen KY, Tang PY, Guo JJ (2020) Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against listeria monocytogenes. Ind. Crop Prod. 144:112036. https://doi.org/10.1016/j.indcrop.2019.112036

  25. Garmus TT, Paviani LC, Queiroga CL, Cabral FA (2015) Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. J Supercrit Fluids 99:68–75. https://doi.org/10.1016/j.supflu.2015.01.016

    CAS  Article  Google Scholar 

  26. Geyid A, Abebe D, Debella A, Makonnen Z, Aberra F, Teka F, Kebede T, Urga K, Yersaw K, Biza T, Mariam BH, Guta M (2005) Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J Ethnopharmacol 97:421–427. https://doi.org/10.1016/j.jep.2004.08.021

    CAS  Article  Google Scholar 

  27. Gherib M, Chahrazed B, El-Haci IA, Chaouche TM, Bekkara FAJ (2016) Antioxidant and antibacterial activities of aerial part essential oil and some organic extracts from the Algerian Medicinal plant Pulicaria Mauritanica Coss. Int. J. Pharm. Sci. Res. 7:76. https://doi.org/10.13040/IJPSR.0975-8232.7 (1).76–84

  28. Hayashi S, Yano K, Matsuura TJTL (1968) Yomogi alcohol a, a new monoterpene alcohol from artemisia feddei lév. et van. Tetrahedron Lett 9:6241–6243. https://doi.org/10.1016/S0040-4039(00)70841-0

    Article  Google Scholar 

  29. Jin L, Zhou W, Li R, Jin M, Jin C, Sun J, Li G (2019) A new polyacetylene and other constituents with anti-inflammatory activity from Artemisia halodendron. Nat. Prod. Res. :1-4. https://doi.org/10.1080/14786419.2019.1610962

  30. Karrar E, Sheth S, Wei W, Wang X (2019) Supercritical CO2 extraction of gurum (Citrulluslanatus var. Colocynthoide) seed oil and its properties comparison with conventional methods. J. Food Process Eng. 42:e13129. https://doi.org/10.1111/jfpe.13129

  31. Larrazabal-Fuentes M et al. (2019) Chemical composition, antioxidant capacity, toxicity and antibacterial activity of the essential oils from Acantholippia deserticola (Phil.) Moldenke (Rica rica) and Artemisia copa Phil. (Copa copa) extracted by microwave-assisted hydrodistillation. Ind. Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111830

  32. Lee WS, Paramanantham A, Jeong EJ, Raha S, Kim HJ, Kim G, Shin SC (2019) Polyphenols from Korean artemisia annua L (pKAL) showed anti-cancer effects by multiple mechanisms on HCT116 human colorectal cancer cells Cancer Res. 13: 1870-1870. https://doi.org/10.1158/1538-7445.Am2019-1870

  33. Li G, Wang X, Yang H, Zhang P, Wu F, Li Y, Zhou Y, Zhang X, Ma H, Zhang W, Li J (2020) α-Linolenic acid but not linolenic acid protects against hypertension: critical role of SIRT3 and autophagic flux. Cell Death Dis 11:1–13. https://doi.org/10.1038/s41419-020-2277-7

    CAS  Article  Google Scholar 

  34. Mahdi AA, Rashed MMA, al-Ansi W, Ahmed MI, Obadi M, Jiang Q, Raza H, Wang H (2019) Enhancing bio-recovery of bioactive compounds extracted from Citrus medica L. Var sarcodactylis: optimization performance of integrated of pulsed-ultrasonic/microwave technique J Food Meas Charact 13:1661–1673. https://doi.org/10.1007/s11694-019-00083-x

    Article  Google Scholar 

  35. Martinezcorrea HA, Bitencourt RG, Kayano ACAV, De Magalhaes PM, Costa F, Cabral FAJIC, Products (2017) Integrated extraction process to obtain bioactive extracts of Artemisia annua L. leaves using supercritical CO2, ethanol and water. Ind. Crop Prod 95:535–542. https://doi.org/10.1016/j.indcrop.2016.11.007

    CAS  Article  Google Scholar 

  36. Mazutti M, Mossi A, Cansian R, Corazza M, Dariva C, Oliveira JVJBJoCE (2008) Chemical profile and antimicrobial activity of Boldo (Peumus boldus Molina) extracts obtained by compressed carbon dioxide extraction. Braz J Chem Eng 25:427–434. https://doi.org/10.1590/S0104-66322008000200020

  37. Mesomo MC, Corazza ML, Ndiaye PM, Dalla Santa OR, Cardozo L, de Paula SA (2013) Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): chemical composition and antibacterial activity. J Supercrit Fluids 80:44–49. https://doi.org/10.1016/j.supflu.2013.03.031

    CAS  Article  Google Scholar 

  38. Mohammed JK, Mahdi AA, Ahmed MI, Abraha B, Admassu H, Wang H (2019) Phenolic compounds and the physicochemical, nutritional, antioxidant, and functional characteristics of peel, flesh, and kernel of Medemia argun (argun palm) fruit. J Food Meas Charact 13:2275–2287. https://doi.org/10.1007/s11694-019-00147-y

    Article  Google Scholar 

  39. Mothana RA, Kriegisch S, Harms M, Wende K, Lindequist U (2011) Assessment of selected Yemeni medicinal plants for their in vitro antimicrobial, anticancer, and antioxidant activities. Pharm Biol 49:200–210. https://doi.org/10.3109/13880209.2010.512295

    Article  Google Scholar 

  40. Mustapa AN, Martin A, Mato RB, Cocero MJ (2015) Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind Crop Prod 74:83–94. https://doi.org/10.1016/j.indcrop.2015.04.035

    CAS  Article  Google Scholar 

  41. Ngo-Mback M, MubarakAli D, Dongmo PJ, Boyom FF, Thajuddin NJB (2019) Anti-candidal biofilm potential of solvent extracts of Aeollanthus cucullathus (Ryding) and its chemical analysis. Biocatal Agric Biotechnol 17:595–604. https://doi.org/10.1016/j.bcab.2019.01.012

    Article  Google Scholar 

  42. Niciforovic N, Mihailovic V, Maskovic P, Solujic S, Stojkovic A, Pavlovic Muratspahic D (2010) Antioxidant activity of selected plant species; potential new sources of natural antioxidants. Food Chem Toxicol 48:3125–3130. https://doi.org/10.1016/j.fct.2010.08.007

    CAS  Article  Google Scholar 

  43. Nigam M, Atanassova M, Mishra AP, Pezzani R, Devkota HP, Plygun S, Salehi B, Setzer WN, Sharifi-Rad J (2019) Bioactive compounds and health benefits of Artemisia species. Nat Prod Commun 2019:1–17. https://doi.org/10.1177/1934578x19850354

    CAS  Article  Google Scholar 

  44. Noumi E, Snoussi M, Merghni A, Nazzaro F, Quindós G, Akdamar G, Mastouri M, al-Sieni A, Ceylan O (2017) Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb Pathogen 109:169–176. https://doi.org/10.1016/j.micpath.2017.05.036

    CAS  Article  Google Scholar 

  45. Ornano L, Venditti A, Ballero M, Sanna C, Quassinti L, Bramucci M, Lupidi G, Papa F, Vittori S, Maggi F, Bianco A (2013) Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from Artemisia arborescens L. growing on the isle of La Maddalena, Sardinia. Italy Chem Biodivers 10:1464–1474. https://doi.org/10.1002/cbdv.201200435

    CAS  Article  Google Scholar 

  46. Palsikowski PA, Besen LM, Santos KA, da Silva C, da Silva EA (2019) Supercritical CO2 oil extraction from Bauhinia forficata link subsp. pruinosa leaves: composition, antioxidant activity and mathematical modeling. J Supercrit Fluids 153:104588. https://doi.org/10.1016/j.supflu.2019.104588

    CAS  Article  Google Scholar 

  47. Peana AT, D'Aquila PS, Panin F, Serra G, Pippia P, Moretti MD (2002) Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9:721–726. https://doi.org/10.1078/094471102321621322

    CAS  Article  Google Scholar 

  48. Pereira CG, Meireles MAAJF (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372. https://doi.org/10.1007/s11947-009-0263-2

    CAS  Article  Google Scholar 

  49. Perricone M, Arace E, Corbo MR, Sinigaglia M, Bevilacqua AJFim (2015) Bioactivity of essential oils: a review on their interaction with food components. Front Microbiol 6:76. https://doi.org/10.3389/fmicb.2015.00076

  50. Petrović NV, Petrović SS, Džamić AM, Ćirić AD, Ristić MS, Milovanović SL, Petrović SD (2016) Chemical composition, antioxidant and antimicrobial activity of Thymus praecox supercritical extracts. J Supercrit Fluids 110:117–125. https://doi.org/10.1016/j.supflu.2016.01.001

    CAS  Article  Google Scholar 

  51. Pishgahzadeh E, Shafaroodi H, Asgarpanah J (2019) Analgesic and antiinflammatory activities of the essential oil from Artemisia sieberi Besser. Braz J Pharm Sci 55:1–7. https://doi.org/10.1590/s2175-97902019000217011

    CAS  Article  Google Scholar 

  52. Quispe-Condori S, Sanchez D, Foglio MA, Rosa PTV, Zetzl C, Brunner G, Meireles MAA (2005) Global yield isotherms and kinetic of artemisinin extraction from Artemisia annua L leaves using supercritical carbon dioxide. J Supercrit Fluids 36:40–48. https://doi.org/10.1016/j.supflu.2005.03.003

    CAS  Article  Google Scholar 

  53. Qureshi S, Ageel AM, al-Yahya MA, Tariq M, Mossa JS, Shah AH (1990) Preliminary toxicity studies on ethanol extracts of the aerial parts of Artemisia abyssinica and A. inculta in mice J Ethnopharmacol 28:157–162. https://doi.org/10.1016/0378-8741(90)90025-o

  54. Ragab EA, Raafat M (2016) A new monoterpene glucoside and complete assignments of dihydroflavonols of Pulicaria jaubertii: potential cytotoxic and blood pressure lowering activity. Nat Prod Res 30:1280–1288. https://doi.org/10.1080/14786419.2015.1055492

    CAS  Article  Google Scholar 

  55. Rufino AT, Ribeiro M, Sousa C, Judas F, Salgueiro L, Cavaleiro C, Mendes AF (2015) Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur J Pharmacol 750:141–150. https://doi.org/10.1016/j.ejphar.2015.01.018

    CAS  Article  Google Scholar 

  56. Ruttarattanamongkol K, Siebenhandl-Ehn S, Schreiner M, Petrasch AM (2014) Pilot-scale supercritical carbon dioxide extraction, physico-chemical properties and profile characterization of Moringa oleifera seed oil in comparison with conventional extraction methods. Ind Crop Prod 58:68–77. https://doi.org/10.1016/j.indcrop.2014.03.020

    CAS  Article  Google Scholar 

  57. Santos DN, de Souza LL, Ferreira NJ, de Oliveira AL (2015a) Study of supercritical extraction from Brazilian cherry seeds (Eugenia uniflora L.) with bioactive compounds. Food bioprod. Process. 94:365–374. https://doi.org/10.1016/j.fbp.2014.04.005

    CAS  Article  Google Scholar 

  58. Santos DN, de Souza LL, de Oliveira CAF, Silva ER, de Oliveira ALJFb (2015b) Arginase inhibition, antibacterial and antioxidant activities of Pitanga seed (Eugenia uniflora L.) extracts from sustainable technologies of high pressure extraction. Food Biosci 12:93–99. https://doi.org/10.1016/j.fbio.2015.09.001

  59. Sun W, Zhang M, Chen H, Zheng D, Fang Z (2016) Effects of deodorization on the physicochemical index and volatile compounds of purple sweet potato anthocyanins (PSPAs). LWT-Food Sci. Technol.68:265-272. https://doi.org/10.1016/j.lwt.2015.12.044

  60. Tariku Y, Hymete A, Hailu A, Rohloff J (2010) Essential-oil composition, antileishmanial, and toxicity study of Artemisia abyssinica and Satureja punctata ssp. punctata from Ethiopia. Chem Biodivers 7:1009–1018. https://doi.org/10.1002/cbdv.200900375

    CAS  Article  Google Scholar 

  61. Tolun A, Altintas Z, Artik N (2016) Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization Journal of biotechnology 239:23–33

  62. Torres-Ossandón MJ, Vega-Gálvez A, López J, Stucken K, Romero J, Di Scala KJTJoSF (2018) Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). J Supercrit Fluids 138:215–220. https://doi.org/10.1016/j.supflu.2018.05.005

  63. Uquiche E, Campos C, Marillan C (2019) Assessment of the bioactive capacity of extracts from Leptocarpha rivularis stalks using ethanol-modified supercritical CO2. J Supercrit Fluids 147:1–8. https://doi.org/10.1016/j.supflu.2019.02.005

    CAS  Article  Google Scholar 

  64. VCF online (2017, February 13) Volatile Compounds in Food 16.4. http://www.vcf-online.nl/VcfGuide.cfm?title=Guide%20to%20searches

  65. Vieitez I, Maceiras L, Jachmanián I, Alborés SJTJoSF (2018) Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. J Supercrit Fluids 133:58–64. https://doi.org/10.1016/j.supflu.2017.09.025

  66. Youssef MM, Mahmoud AA, Al-Faiyz YS (2015) Antimicrobial and antioxidant activities of Artemisia abyssinica extracts and DNA degradation effects. Asian J Biochem 10:31–41. https://doi.org/10.3923/ajb.2015.31.41

    Article  Google Scholar 

  67. Zhang J, Wen C, Zhang H, Duan Y, Ma HJTiFS, Technology (2019) Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends Food Sci Technol 133:58–64. https://doi.org/10.1016/j.supflu.2017.09.025

Download references

Funding

This work was supported by the China Scholarship Council (CSC) (2018GXZ018756), Key R&D Program of Jiangsu Province (BE2019362), Science and Technology Plan of Suzhou City (SS2019016), China Postdoctoral Science Foundation Funded Project (2018 M642165), Science and Technology Project of Jiangsu Bureau of Quality and Technical Supervision (KJ175923 and KJ185646), National Key R&D Program of China (2018YFC1602300), National First-class Discipline Program of Food Science and Technology (JUFSTR20180509), The Natural Science Foundation of Jiangsu Province (BK20171139), and Forestry Science and Technology Innovation and Extension Project of Jiangsu Province (No. LYKJ [2017] 26).

Author information

Affiliations

Authors

Contributions

Qais Ali Al-Maqtari: Conceptualization, methodology, software, validation, formal analysis, investigation, and writing - original draft; Waleed Al-Ansi: Writing - review and editing; Amer Ali Mahdi: Conceptualization, methodology, software, validation, and formal analysis; Adel Ali Saeed Al-Gheethi: Conceptualization, data curation, writing - review, and editing; Bilal Sajid Mushtaq: Methodology, software, and formal analysis; Abdulqader Aladeeb: Writing - review, and editing; Minping Wei: Methodology and software analysis; Weirong Yao: Conceptualization, validation, investigation, data curation, writing - review, and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Weirong Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript did not contain any individual persons’ data in any form (including individual details, images, or videos).

Consent to participate

Not applicable.

Consent to publish

All authors agree to publish this manuscript in the Journal of Environmental Science and Pollution Research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Diane Purchase

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Maqtari, Q.A., Al-Ansi, W., Mahdi, A.A. et al. Supercritical fluid extraction of four aromatic herbs and assessment of the volatile compositions, bioactive compounds, antibacterial, and anti-biofilm activity. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12346-6

Download citation

Keywords

  • Supercritical fluids extraction
  • Volatile compositions
  • Phenolic content
  • Antioxidant
  • Antibacterial
  • Anti-biofilm