V-doped TiO2 photocatalysts and their application to pollutant degradation

Abstract

V-doped TiO2 materials (0.01, 0.05, 0.10, and 1.00 nominal atomic %) were synthesized by the sol-gel method and characterized by X-ray diffraction, Raman spectroscopy, UV–visible diffuse reflectance spectroscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Two vanadium precursors (vanadyl acetylacetonate and ammonium metavanadate) and three calcination temperatures (400, 500, and 600 °C, with and without air circulation) were assayed. The efficiency of the materials as photocatalysts was studied by the degradation of phenol with UV and visible lamps. The photocatalyst prepared from vanadium acetylacetonate, with a vanadium content of 0.01 nominal atomic %, calcination at 400 °C without air circulation (0.01VTi-400), showed the best performance, reaching 100% and 30% degradation of phenol (50 μM) by irradiation with UV lamps (3 h) and visible lamps (5 h), respectively. To evaluate the efficiency of this catalyst in the degradation of other structurally related compounds, two substituted phenols were selected: 4-chlorophenol and 4-nitrophenol. The 0.01VTi-400 photocatalyst showed to be applicable to the degradation of phenolic compounds when the substituent was an activating group or a weakly deactivating group (for electrophilic reactions). Additionally, the selectivity of 0.01VTi-400 for phenol degradation in the presence of Aldrich humic acid was tested: phenol degradation reached 68% (3 h, UV lamps). The performance of 0.01VTi-400 indicated that it is a promising material for further applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Anju KR, Thankapan R, Rajabathar JR, Al-Lohedan HA (2018) Hydrothermal synthesis of nanosized (Fe, Co, Ni)-TiO2 for enhanced visible light photosensitive applications. Optik (Stuttg) 165:408–415. https://doi.org/10.1016/j.ijleo.2018.03.091

    CAS  Article  Google Scholar 

  2. Beck M, Dellwig O, Fischer S, Schnetger B, Brumsack HJ (2012) Trace metal geochemistry of organic carbon-rich watercourses draining the NW German coast. Estuar Coast Shelf Sci 104:66–79. https://doi.org/10.1016/j.ecss.2012.03.025

    CAS  Article  Google Scholar 

  3. Belfaa K, Lassoued MS, Ammar S et al (2018) Synthesis and characterization of V-doped TiO2nanoparticles through polyol method with enhanced photocatalytic activities. J Mater Sci: Mater Electron 29:10269–10276. https://doi.org/10.1007/s10854-018-9080-6

    CAS  Article  Google Scholar 

  4. Bulushev DA, Kiwi-Minsker L, Rainone F, Renken A (2002) Characterization of surface vanadia forms on V/Ti-oxide catalyst via temperature-programmed reduction in hydrogen and spectroscopic methods. J Catal 205:115–122. https://doi.org/10.1006/jcat.2001.3427

    CAS  Article  Google Scholar 

  5. Cai J, Zhou M, Du X, Xu X (2021) Enhanced mechanism of 2,4-dichlorophenoxyacetic acid degradation by electrochemical activation of persulfate on blue-TiO2 nanotubes anode. Sep Purif Technol 254:117560. https://doi.org/10.1016/j.seppur.2020.117560

    CAS  Article  Google Scholar 

  6. Chang HY, Wang SP, Chang JR, Sheu HS, Shyu SG (2012) Synchrotron radiation PXRD investigation of V2O5/TiO2 catalysts for 1,2-dichlorobenzene oxidation: implication of structure modification. Appl Catal B Environ 111–112:476–484. https://doi.org/10.1016/j.apcatb.2011.10.037

    CAS  Article  Google Scholar 

  7. Chen W, Koshy P, Adler L, Sorrell CC (2017) Photocatalytic activity of V-doped TiO2 thin films for the degradation of methylene blue and rhodamine B dye solutions. https://doi.org/10.1007/s41779-017-0068-0

  8. Choi J, Park H, Hoffmann MR (2010) Effects of single metal-ion doping on the visible-light Photoreactivity of TiO2. J Phys Chem C 114:783–792. https://doi.org/10.1021/jp908088x

    CAS  Article  Google Scholar 

  9. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. https://doi.org/10.1021/j100102a038

    Article  Google Scholar 

  10. Colton RJ, Guzman AM, Rabalais JW et al (1978) Electrochromism in some thinfilm transitionmetal oxides characterized by x ray electron spectroscopy Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy, p 409. https://doi.org/10.1063/1.324349

  11. Deng J, Ge Y, Tang C et al (2017) Degradation of ciprofloxacin using A-MnO2 activated peroxymonosulfate process. Effect of water constituents, degradation intermediates and toxicity evaluation. Chem Eng J 330:1390–1400. https://doi.org/10.1016/j.cej.2017.07.137

    CAS  Article  Google Scholar 

  12. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038

    CAS  Article  Google Scholar 

  13. El-naas MH, Alhaija MA, Al-zuhair S (2014) Journal of environmental chemical engineering evaluation of a three-step process for the treatment of petroleum refinery wastewater. J Environ Chem Eng 2:56–62. https://doi.org/10.1016/j.jece.2013.11.024

    CAS  Article  Google Scholar 

  14. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    CAS  Article  Google Scholar 

  15. Gallastegi-Villa M, Aranzabal A, Boukha Z, González-Marcos JA, González-Velasco JR, Martínez-Huerta MV, Bañares MA (2015) Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas. Catal Today 254:2–11. https://doi.org/10.1016/j.cattod.2015.02.029

    CAS  Article  Google Scholar 

  16. Ghampson IT, Pecchi G, Fierro JLG, Videla A, Escalona N (2017) Catalytic hydrodeoxygenation of anisole over re-MoOx/TiO2 and re-VOx/TiO2 catalysts. Appl Catal B Environ 208:60–74. https://doi.org/10.1016/j.apcatb.2017.02.047

    CAS  Article  Google Scholar 

  17. Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471. https://doi.org/10.1016/j.watres.2012.07.048

    CAS  Article  Google Scholar 

  18. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, second Edi Harold P. Klug LEA (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials

  19. He F, Qin K, Luo J, Liu S (2017) Effect of preparation method and vanadium loading amount on the catalytic activity of V/TiO2 nanoparticles, pp  9050–9055. https://doi.org/10.1166/jnn.2017.14365

  20. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2 : challenges and opportunities. Energy Environ Sci 2:1231–1257. https://doi.org/10.1039/b907933e

    CAS  Article  Google Scholar 

  21. Hidalgo JM, Tišler Z, Kubička D, Raabova K, Bulanek R (2016) (V)/Hydrotalcite, (V)/Al2O3, (V)/TiO2 and (V)/SBA-15 catalysts for the partial oxidation of ethanol to acetaldehyde. J Mol Catal A Chem 420:178–189. https://doi.org/10.1016/j.molcata.2016.04.024

    CAS  Article  Google Scholar 

  22. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    CAS  Article  Google Scholar 

  23. Iketani K, De Sun R, Toki M et al (2004) Sol-gel-derived VχTi1-χO2 films and their photocatalytic activities under visible light irradiation. Mater Sci Eng B Solid-State Mater Adv Technol 108:187–193. https://doi.org/10.1016/j.mseb.2003.09.013

  24. Jaiswal R, Patel N, Kothari DC, Miotello A (2012) Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen. Appl Catal B Environ 126:47–54. https://doi.org/10.1016/j.apcatb.2012.06.030

    CAS  Article  Google Scholar 

  25. Kamegawa T, Sonoda J, Sugimura K et al (2009) Degradation of isobutanol diluted in water over visible light sensitive vanadium doped TiO2 photocatalyst, pp 486:685–688. https://doi.org/10.1016/j.jallcom.2009.07.035

  26. Khan M, Song Y, Chen N, Cao W (2013) Effect of V doping concentration on the electronic structure, optical and photocatalytic properties of nano-sized V-doped anatase TiO2. Mater Chem Phys 142:148–153. https://doi.org/10.1016/j.matchemphys.2013.06.050

    CAS  Article  Google Scholar 

  27. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216. https://doi.org/10.1006/jcat.1998.2295

    CAS  Article  Google Scholar 

  28. Klosek S, Raftery D (2002) Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J Phys Chem B 105:2815–2819. https://doi.org/10.1021/jp004295e

    CAS  Article  Google Scholar 

  29. Klug HP, Alexander LE (1974) X-Ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley

  30. Liu B, Wang X, Cai G, Wen L, Song Y, Zhao X (2009) Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. J Hazard Mater 169:1112–1118. https://doi.org/10.1016/j.jhazmat.2009.04.068

    CAS  Article  Google Scholar 

  31. Loan TT, Long NN (2019) Effect of Co2+ doping on Raman spectra and the phase transformation of TiO2:Co2+ nanowires. J Phys Chem Solids 124:336–342. https://doi.org/10.1016/j.jpcs.2018.09.007

    CAS  Article  Google Scholar 

  32. Ma X, Xue L, Yin S, Yang M, Yan Y (2014) Preparation of V-doped TiO2 photocatalysts by the solution combustion method and their visible light photocatalysis activities. J Wuhan Univ Technol Mater Sci Ed 29:863–868. https://doi.org/10.1007/s11595-014-1010-8

    CAS  Article  Google Scholar 

  33. Machold T, Suprun WY, Papp H (2008) Characterization of VOx-TiO2 catalysts and their activity in the partial oxidation of methyl ethyl ketone. J Mol Catal A Chem 280:122–130. https://doi.org/10.1016/j.molcata.2007.11.001

    CAS  Article  Google Scholar 

  34. Martin MV, Villabrille PI, Rosso JA (2015) The influence of Ce doping of titania on the photodegradation of phenol. Environ Sci Pollut Res 22:14291–14298. https://doi.org/10.1007/s11356-015-4667-4

    CAS  Article  Google Scholar 

  35. Martin ST, Morrison CL, Hoffmann MR (1994) Photochemical mechanism of size-quantized vanadium-doped TiO2 particles, pp 13695–13704. https://doi.org/10.1021/j100102a041

  36. Martin MV, Ipiña A, Villabrille PI, Rosso JA (2017) Combination of sunlight, oxidants, and Ce-doped TiO2 for phenol degradation. Environ Sci Pollut Res 24:6013–6021. https://doi.org/10.1007/s11356-016-6258-4

    CAS  Article  Google Scholar 

  37. McDaniel DH, Brown HC (1957) An Extended Table of Hammett Substituent Constants Based on the Ionization of Substituted Benzoic Acids 23:420–427. https://doi.org/10.1021/jo01097a026

    Article  Google Scholar 

  38. O’Shea KE, Cardona C (1994) Hammett study on the TiO2-catalyzed photooxidation of para-substituted phenols. A Kinetic and Mechanistic Analysis J Org Chem 59:5005–5009. https://doi.org/10.1021/jo00096a052

    Article  Google Scholar 

  39. Oh S-Y, Shin D-S (2013) Treatment of diesel-contaminated soil by Fenton and persulfate oxidation with zero-valent iron. Soil Sediment Contam An Int J 23:180–193. https://doi.org/10.1080/15320383.2014.808170

    CAS  Article  Google Scholar 

  40. Palacio M, Rossi L, Farías Hermosilla EM et al (2017) Selective photodegradation of phenol in the presence of a commercial humic acid. J Environ Chem Eng 5:5540–5546. https://doi.org/10.1016/j.jece.2017.10.021

    CAS  Article  Google Scholar 

  41. Patel N, Jaiswal R, Warang T, Scarduelli G, Dashora A, Ahuja BL, Kothari DC, Miotello A (2014) Efficient photocatalytic degradation of organic water pollutants using V-N-codoped TiO2 thin films. Appl Catal B Environ 150–151:74–81. https://doi.org/10.1016/j.apcatb.2013.11.033

    CAS  Article  Google Scholar 

  42. Plumejeau S, Rivallin M, Brosillon S, Ayral A, Boury B (2016) M-doped TiO2 and TiO2-MxOy mixed oxides (M = V, bi, W) by reactive mineralization of cellulose - evaluation of their photocatalytic activity. Eur J Inorg Chem 2016:1200–1205. https://doi.org/10.1002/ejic.201501293

    CAS  Article  Google Scholar 

  43. Princeton University (2016) Office of environmental health and safety, pp 1–2

  44. Reddy BM, Lee SC, Han DS, Park SE (2009) Utilization of carbon dioxide as soft oxidant for oxydehydrogenation of ethylbenzene to styrene over V2O5-CeO2/TiO2-ZrO2 catalyst. Appl Catal B Environ 87:230–238. https://doi.org/10.1016/j.apcatb.2008.08.026

    CAS  Article  Google Scholar 

  45. Ren F, Li H, Wang Y, Yang J (2015) Enhanced photocatalytic oxidation of propylene over V-doped TiO2 photocatalyst: reaction mechanism between V5+ and single-electron-trapped oxygen vacancy. Appl Catal B Environ 176–177:160–172. https://doi.org/10.1016/j.apcatb.2015.03.050

    CAS  Article  Google Scholar 

  46. Sacco O, Sannino D, Matarangolo M, Vaiano V (2019) Room temperature synthesis of V-doped TiO2 and its photocatalytic activity in the removal of caffeine under UV irradiation. https://doi.org/10.3390/ma12060911

  47. Sas OG, Domínguez I, González B, Domínguez Á (2018) Liquid-liquid extraction of phenolic compounds from water using ionic liquids : literature review and new experimental data using [C2mim] FSI. J Environ Manag 228:475–482. https://doi.org/10.1016/j.jenvman.2018.09.042

    CAS  Article  Google Scholar 

  48. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    CAS  Article  Google Scholar 

  49. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity 57:603–619. https://doi.org/10.1351/pac198557040603

    CAS  Article  Google Scholar 

  50. Song H, Yan L, Ma J, Jiang J, Cai G, Zhang W, Zhang Z, Zhang J, Yang T (2017) Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: efficiency, mechanism and influencing factors. Water Res 116:182–193. https://doi.org/10.1016/j.watres.2017.03.035

    CAS  Article  Google Scholar 

  51. Tang T, Lu G, Wang W, Wang R, Huang K, Qiu Z, Tao X, Dang Z (2018) Photocatalytic removal of organic phosphate esters by TiO2: effect of inorganic ions and humic acid. Chemosphere 206:26–32. https://doi.org/10.1016/j.chemosphere.2018.04.161

    CAS  Article  Google Scholar 

  52. Tolosana-Moranchel A, Ovejero D, Barco B, Bahamonde A, Díaz E, Faraldos M (2019) An approach on the comparative behavior of chloro / nitro substituted phenols photocatalytic degradation in water. J Environ Chem Eng 7:103051. https://doi.org/10.1016/j.jece.2019.103051

    CAS  Article  Google Scholar 

  53. Wu JCS, Chen CH (2004) A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J Photochem Photobiol A Chem 163:509–515. https://doi.org/10.1016/j.jphotochem.2004.02.007

    CAS  Article  Google Scholar 

  54. Yu JH, Nam SH, Lee JW, Kim DI, Boo JH (2019) Oxidation state and structural studies of vanadium-doped titania particles for the visible light-driven photocatalytic activity. Appl Surf Sci 472:46–53. https://doi.org/10.1016/j.apsusc.2018.04.125

    CAS  Article  Google Scholar 

  55. Zaleska A (2008) Doped-TiO 2 : a review. Recent Patents Eng 2:157–164

    CAS  Article  Google Scholar 

  56. Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV raman spectroscopic study on TiO2- I. phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935. https://doi.org/10.1021/jp0552473

    CAS  Article  Google Scholar 

  57. Zhao YF, Li C, Lu S, Yan LJ, Gong YY, Niu LY, Liu XJ (2016) Effects of oxygen vacancy on 3 d transition-metal doped anatase TiO2: first principles calculations. Chem Phys Lett 647:36–41. https://doi.org/10.1016/j.cplett.2016.01.040

    CAS  Article  Google Scholar 

Download references

Acknowledgments

JAR and PIV are research members of CONICET. MP is a CPA member of CONICET. LR thanks CONICET for a doctoral studentship and SACAT for the internship under Dr. Miguel De Sanchez supervision. The authors wish to thank Pablo Fetsis and Juan Tara for their TPR and sorptometry experimental contribution.

Funding

This study was funded by Grants X835 from Universidad Nacional de La Plata and PIP 2015 0329 from Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.

Author information

Affiliations

Authors

Contributions

LR: Investigation, visualization, writing - original draft, and writing - review and editing. MP: Investigation. PIV: Conceptualization, resources, writing - original draft, writing - review and editing, supervision, project administration, and funding acquisition. JAR: Conceptualization, resources, writing - original draft, writing - review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Paula I. Villabrille.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Sami Rtimi

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rossi, L., Palacio, M., Villabrille, P.I. et al. V-doped TiO2 photocatalysts and their application to pollutant degradation. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-021-12339-5

Download citation

Keywords

  • Vanadyl acetylacetonate
  • Ammonium metavanadate
  • Phenol
  • 4-chlorophenol
  • 4-nitrophenol
  • Aldrich humic acid