Skip to main content

Advertisement

Log in

Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acrylamide is a chemical monomer; its polymer compounds are used in the manufacture of plastic, papers, adhesive tapes, dyes, and food packaging. Lately, scientists found that cooking (mainly roasting, baking, and frying) yields acrylamide. In addition to fried/baked potatoes, coffee and bakery products still contain substantial amounts of acrylamide. Acrylamide has toxic effects on different body systems include genitourinary, reproductive, nervous system, along with being a carcinogenic substance. The neurotoxicity of acrylamide includes central and peripheral neuropathy. In humans, the clinical manifestations include sensory or motor peripheral neuropathy, drowsiness, or cerebellar ataxia. Likewise, it presents with skeletal muscle weakness, hindlimb dysfunction, ataxia, and weight loss in animals. The suggested mechanisms for acrylamide neurotoxicity include direct inhibition of neurotransmission, cellular changes, inhibition of key cellular enzymes, and bonding of kinesin-based fast axonal transport. Moreover, it is suggested that acrylamide’s molecular effect on SNARE core kinetics is carried out through the adduction of NSF and/or SNARE proteins. Lately, scientists showed disruption of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) cell signaling pathways in human differentiating neuroblastoma SH-SY5Y cells, exposed to acrylamide. Different treatment modalities have been revealed to shield against or hasten recovery from acrylamide-induced neuropathy in preclinical studies, including phytochemical, biological, and vitamin-based compounds. Still, additional studies are needed to elucidate the pathogenesis and to identify the best treatment modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable for this study.

Abbreviations

FAK:

focal adhesion kinase

FK506:

tacrolimus

MESM:

methanolic leaf extract of Swietenia mahagoni

Methyl-B12:

methylcobalamin

NSF:

N-ethylmaleimide-sensitive fusion protein

Pyk2:

proline-rich tyrosine kinase 2

SNAREs:

soluble NSF attachment protein receptors

References

  • Abdel-Daim MM, Abd Eldaim MA, Hassan AG (2015 Jun) Trigonella foenum-graecum ameliorates acrylamide-induced toxicity in rats: roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochem Cell Biol 93(3):192–198. https://doi.org/10.1139/bcb-2014-0122

    Article  CAS  Google Scholar 

  • Abdel-Daim MM, Abo El-Ela FI, Alshahrani FK, Bin-Jumah M, Al-Zharani M, Almutairi B, Alyousif MS, Bungau S, Aleya L, Alkahtani S (2020 Oct) Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environ Sci Pollut Res Int 27(30):37709–37717. https://doi.org/10.1007/s11356-020-09516-3

    Article  CAS  Google Scholar 

  • Ahmed HH, Elmegeed GA, el-Sayed SM, Abd-Elhalim MM, Shousha WG, Shafic RW (2010) Potent neuroprotective role of novel melatonin derivatives for management of central neuropathy induced by acrylamide in rats. Eur J Med Chem 45:5452–5459

    CAS  Google Scholar 

  • Ansar S, Siddiqi NJ, Zargar S, Ganaie MA, Abudawood M (2016) Hepatoprotective effect of quercetin supplementation against acrylamide-induced DNA damage in wistar rats. BMC Complement Altern Med 16:327

    Google Scholar 

  • Bachmann M, Myers JE, Bezuidenhout BN (1992) Acrylamidemonomer and peripheral neuropathy in chemical workers. Am J Ind Med 21:217–222

    CAS  Google Scholar 

  • Becalski A, Lau BP-Y, Lewis D, Seaman SW (2003) Acrylamide in foods: occurrence, sources, and modeling. J Agric Food Chem 51:802–808

    CAS  Google Scholar 

  • Biedermann M, Biedermann-Brem S, Noti A, Grob K (2002) Methods for determining the potential of acrylamide formation and its elimination in raw materials for food preparation, such as potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 93:653–667

    CAS  Google Scholar 

  • Blank I, Robert F, Goldmann T, Pollien P, Varga N, Devaud S, Saucy F, Huynh-Ba T, Stadler RH (2005) Mechanisms of acrylamide formation, Chemistry and safety of acrylamide in food. Springer, pp.:171–189

  • Bucolo C, Marrazzo G, Platania CB, Drago F, Leggio GM, Salomone S (2013) Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy. J Diabetes Res2013:432695

  • Calleman CJ, Wu Y, He F, Tian G, Bergmark E, Zhang S, Deng H, Wang Y, Crofton KM, Fennell T et al (1994) Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol Appl Pharmacol 126:361–371

    CAS  Google Scholar 

  • Casado FJ, Sánchez AH, Montaño A (2010) Reduction of acrylamide content of ripe olives by selected additives. Food Chem 119:161–166

    CAS  Google Scholar 

  • Casella IG, Contursi M (2004) Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection. J Agric Food Chem 52:5816–5821

    CAS  Google Scholar 

  • Cheng KW, Shi JJ, Ou SY, Wang M, Jiang Y (2010) Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. J Agric Food Chem 58:309–312

    CAS  Google Scholar 

  • Chuda Y, Ono H, Yada H, Ohara-Takada A, Matsuura-Endo C, Mori M (2003) Effects of physiological changes in potato tubers (Solanum tuberosum L.) after low temperature storage on the level of acrylamide formed in potato chips. Biosci Biotechnol Biochem 67:1188–1190

    CAS  Google Scholar 

  • Claeys W, De Meulenaer B, Huyghebaert A, Scippo M-L, Hoet P, Matthys C (2016) Reassessment of the acrylamide risk: Belgium as a case-study. Food Control 59:628–635

    CAS  Google Scholar 

  • Coughlin JR (2003) Acrylamide: what we have learned so far-back page. Food Technol-Chicago 57:100

    Google Scholar 

  • Daniali G, Jinap S, Sanny M, Tan CP (2018) Effect of amino acids and frequency of reuse frying oils at different temperature on acrylamide formation in palm olein and soy bean oils via modeling system. Food Chem 245:1–6

    CAS  Google Scholar 

  • Dschida WJ, Bowman BJ (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 270:1557–1563

    CAS  Google Scholar 

  • Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MMA, Bungău SG, Aleya L, Abdel-Daim MM (2019 Dec) Protective effects of hesperidin and diosmin against acrylamide induced liver, kidney, and brain oxidative damage in rats. Environ Sci Pollut Res Int 26(34):35151–35162. https://doi.org/10.1007/s11356-019-06660-3

    Article  CAS  Google Scholar 

  • Elmore JS, Koutsidis G, Dodson AT, Mottram DS, Wedzicha BL (2005) The effect of cooking on acrylamide and its precursors in potato, wheat and rye. Adv Exp Med Biol 561:255–269

    CAS  Google Scholar 

  • Exon JH (2006) A review of the toxicology of acrylamide. J Toxicol Environ Health. Part B, Critical reviews 9:397–412

    CAS  Google Scholar 

  • Fang J, Liang CL, Jia XD, Li N (2014) Immunotoxicity of acrylamide in female BALB/c mice. Biomed Environ Sci 27:401–409

    CAS  Google Scholar 

  • Fiselier K, Hartmann A, Fiscalini A, Grob K (2005) Higher acrylamide contents in French fries prepared from “fresh” prefabricates. Eur Food Res Technol 221:376–381

    CAS  Google Scholar 

  • Friedman M (1973) Chemistry and biochemistry of the sulfhydryl group in amino acids, peptides and proteins

    Google Scholar 

  • Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 51:4504–4526

    CAS  Google Scholar 

  • Fu Z, Yoo MJ, Zhou W, Zhang L, Chen Y, Lu J (2018) Effect of (−)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chem 242:162–168

    CAS  Google Scholar 

  • Garland TO, Patterson MW (1967) Six cases of acrylamide poisoning. British Med J 4:134–138

    Google Scholar 

  • Goffeng LO, Kjuus H, Heier MS, Alvestrand M, Ulvestad B, Skaug V (2008) Colour vision and light sensitivity in tunnel workers previously exposed to acrylamide and N-methylolacrylamide containing grouting agents. Neurotoxicology 29:31–39

    CAS  Google Scholar 

  • Gold BG, Voda J, Yu X, Gordon H (2004) The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol 187:160–170

    CAS  Google Scholar 

  • Granvogl M, Schieberle P (2006) Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. J Agric Food Chem 54:5933–5938

    CAS  Google Scholar 

  • Hopkins A (1970) The effect of acrylamide on the peripheral nervous system of the baboon. J Neurol Neurosurg Psychiatry 33:805–816

    CAS  Google Scholar 

  • Howland RD (1985) Biochemical studies of acrylamide neuropathy. Neurotoxicology 6:7–15

    CAS  Google Scholar 

  • Howland RD, Lowndes HE (1984) Peripheral nerve phospholipids in acrylamide neuropathy. Arch Toxicol 55:178–181

    CAS  Google Scholar 

  • Ishihara K, Matsunaga A, Miyoshi T, Nakamura K, Nakayama T, Ito S, Koga H (2005) Formation of acrylamide in a processed food model system, and examination of inhibitory conditions. Shokuhin eiseigaku zasshi J Food Hygienic Soc Japan 46:33–39

    CAS  Google Scholar 

  • Jouquand C, Niquet-Léridon C, Jacolot P, Petit N, Marier D, Gadonna-Widehem P (2018) Effects of Maillard reaction products on sensory and nutritional qualities of the traditional French baguette. J Food Sci 83:2424–2431

    CAS  Google Scholar 

  • Kageyama T, Hashimoto S, Suenaga T (2017) Subacute acrylamide intoxication with severe visual disturbance: a case report. Neuroophthalmology (Aeolus Press) 41:207–210

    Google Scholar 

  • Kahkeshani N, Saeidnia S, Abdollahi M (2015) Role of antioxidants and phytochemicals on acrylamide mitigation from food and reducing its toxicity. J Food Sci Technol 52:3169–3186

    CAS  Google Scholar 

  • Kareb O, Gomaa A, Champagne CP, Jean J, Aïder M (2017) Electroactivation of sweet defatted whey: impact on the induced Maillard reaction products and bioactive peptides. Food Chem 221:590–598

    CAS  Google Scholar 

  • Keramat J, LeBail A, Prost C, Jafari M (2011a) Acrylamide in baking products: a review article. Food Bioprocess Technol 4:530–543

    CAS  Google Scholar 

  • Keramat J, LeBail A, Prost C, Soltanizadeh N (2011b) Acrylamide in foods: chemistry and analysis. A review. Food Bioprocess Technol 4:340–363

    CAS  Google Scholar 

  • Kesson CM, Baird AW, Lawson DH (1977) Acrylamide poisoning. Postgrad Med J 53:16–17

    CAS  Google Scholar 

  • Khan MR, Alothman ZA, Naushad M, Alomary AK, Alfadul SM, Alsohaimi IH, Algamdi MS (2017) Occurrence of acrylamide carcinogen in Arabic coffee Qahwa, coffee and tea from Saudi Arabian market. Sci Rep 7:1–8

    Google Scholar 

  • Kiianitsa K, Maizels N (2020) The “adductome”: A limited repertoire of adducted proteins in human cells. DNA Repair. 89:102825. https://doi.org/10.1016/j.dnarep.2020.102825

  • KoMH CWP, Hsieh ST (2002) Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis 11:155–165

    Google Scholar 

  • Konings EJ, Baars A, van Klaveren JD, Spanjer M, Rensen P, Hiemstra M, Van Kooij J, Peters P (2003) Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem Toxicol 41:1569–1579

    CAS  Google Scholar 

  • Krishnakumar T, Visvanathan R (2014) Acrylamide in food products: a review. J Food Process Technol

    Google Scholar 

  • Kuek SL, Tarmizi AHA, Abd Razak RA, Jinap S, Norliza S, Sanny M (2020) Contribution of lipid towards acrylamide formation during intermittent frying of French fries. Food Control 118:107430

    Google Scholar 

  • Lehning EJ, Persaud A, Dyer KR, Jortner BS, LoPachin RM (1998) Biochemical and morphologic characterization of acrylamide peripheral neuropathy. Toxicol Appl Pharmacol 151:211–221

    CAS  Google Scholar 

  • Leiva-Valenzuela GA, Quilaqueo M, Mariotti-Celis MS, Letelier K, Estay D, Pedreschi F (2019) Predicting furan content in a fried dough system using image analysis. Food Chem 298:125096

    CAS  Google Scholar 

  • Levine RA, Smith RE (2005) Sources of variability of acrylamide levels in a cracker model. J Agric Food Chem 53:4410–4416

    CAS  Google Scholar 

  • Li Volti G, Salomone S, Sorrenti V, Mangiameli A, Urso V, Siarkos I, Galvano F, Salamone F (2011) Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc Diabetol 10:62

    CAS  Google Scholar 

  • Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Ann Rev Cell Dev Biol 16:19–49

    CAS  Google Scholar 

  • Lineback DR, Coughlin JR, Stadler RH (2012) Acrylamide in foods: a review of the science and future considerations. Annu Rev Food Sci Technol 3:15–35

    CAS  Google Scholar 

  • Littleton JT, Chapman ER, Kreber R, Garment MB, Carlson SD, Ganetzky B (1998) Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron 21:401–413

    CAS  Google Scholar 

  • LoPachin R, Ross J, Lehning E (2002) Nerve terminals as the primary site of acrylamide action: a hypothesis. Neurotoxicology 23:43–59

    CAS  Google Scholar 

  • LoPachin RM, Balaban C, Ross J (2003) Acrylamide axonopathy revisited. Toxicol Appl Pharmacol 188:135–153

    CAS  Google Scholar 

  • Malaguarnera M (2012) Carnitine derivatives: clinical usefulness. Curr Opin Gastroenterol 28:166–176

    CAS  Google Scholar 

  • Malaguarnera M (2013) Acetyl-L-carnitine in hepatic encephalopathy. Metab Brain Dis 28:193–199

    CAS  Google Scholar 

  • Malhotra V, Orci L, Glick BS, BlockMR RJE (1988) Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54:221–227

    CAS  Google Scholar 

  • Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235

    CAS  Google Scholar 

  • Mehri S, Karami HV, Hassani FV, Hosseinzadeh H (2014) Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed J 18:101–106

    CAS  Google Scholar 

  • Mencin M, Abramovič H, Vidrih R, Schreiner M (2020) Acrylamide levels in food products on the Slovenian market. Food Control 107267

  • Miller MS, Miller MJ, Burks TF, Sipes IG (1983) Altered retrograde axonal transport of nerve growth factor after single and repeated doses of acrylamide in the rat. Toxicol Appl Pharmacol 69:96–101

    CAS  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    CAS  Google Scholar 

  • Mustafa A, Andersson R, Rosén J, Kamal-Eldin A, Aman P (2005) Factors influencing acrylamide content and color in rye crisp bread. J Agric Food Chem 53:5985–5989

    CAS  Google Scholar 

  • MUSTĂ EA G, NEGOI Ă M, POPA ME (2016) Influence of flour extraction degree on acrylamide formation in biscuits. Romanian Biotechnol Lett 21:11329

  • Nakagawa-Yagi Y, Choi DK, Ogane N, Shimada S, Seya M, Momoi T, Ito T, Sakaki Y (2001) Discovery of a novel compound: insight into mechanisms for acrylamide-induced axonopathy and colchicine induced apoptotic neuronal cell death. Brain Res 909:8–19

    CAS  Google Scholar 

  • Napolitano A, Morales F, Sacchi R, Fogliano V (2008) Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. J Agric Food Chem 56:2034–2040

    CAS  Google Scholar 

  • Nichols BJ, Pelham HR (1998) SNAREs and membrane fusion in the Golgi apparatus. Biochim Biophys Acta 1404:9–31

    CAS  Google Scholar 

  • Nordin-Andersson M, Walum E, Kjellstrand P, Forsby A (2003) Acrylamide-induced effects on general and neurospecific cellular functions during exposure and recovery. Cell Biol Toxicol 19:43–51

    CAS  Google Scholar 

  • Pan ZH, Bähring R, Grantyn R, Lipton SA (1995) Differential modulation by sulfhydryl redox agents and glutathione of GABA- and glycine-evoked currents in rat retinal ganglion cells. J Neurosci 15:1384–1391

    CAS  Google Scholar 

  • Paulsson B, Larsen KO, Törnqvist M (2006) Hemoglobin adducts in the assessment of potential occupational exposure to acrylamides – three case studies. Scand J Work Environ Health 32:154–159

    Google Scholar 

  • Pedreschi F, Kaack K, Granby K (2006) Acrylamide content and color development in fried potato strips. Food Res Int 39:40–46

    CAS  Google Scholar 

  • Pedreschi F, Leon J, Mery D, Moyano P, Pedreschi R, Kaack K, Granby K (2007) Color development and acrylamide content of pre-dried potato chips. J Food Eng 79:786–793

    CAS  Google Scholar 

  • Pelucchi C, La Vecchia C, Bosetti C, Boyle P, Boffetta P (2011) Exposure to acrylamide and human cancer–a review and meta analysis of epidemiologic studies. Ann Oncol 22:1487–1499

    CAS  Google Scholar 

  • Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854

    Google Scholar 

  • Perez-Saad H, Subiros N, Berlanga J, Aldana L, Garcia Del Barco D (2017) Neuroprotective effect of epidermal growth factor in experimental acrylamide neuropathy: an electrophysiological approach. J Peripher Nerv Syst 22:106–111

    CAS  Google Scholar 

  • Perrin BJ, Huttenlocher A (2002) Calpain. Int J Biochem Cell Biol 34:722–725

    CAS  Google Scholar 

  • Pham HT, Hoang HM (2020) Factors affecting acrylamide mitigation in fried potatoes. Sci Technol Dev J 23:548–554

    Google Scholar 

  • Pradat PF, Kennel P, Naimi-Sadaoui S, Finiels F, Orsini C, Revah F, Delaere P, Mallet J (2001) Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Hum Gene Ther 12:2237–2249

    CAS  Google Scholar 

  • Prasad SN, Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy. Neurotoxicology 33:1254–1264

    CAS  Google Scholar 

  • Prasad SN, Muralidhara (2013) Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem Res 38:330–345

    CAS  Google Scholar 

  • Prasad SN, Muralidhara (2014) Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy. J Insect Physiol 60:7–16

    CAS  Google Scholar 

  • Rifai L, Saleh FA (2020) A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. Int J Toxicol 39:93–102

    CAS  Google Scholar 

  • Roszko MŁ, Szczepańska M, Szymczyk K, Rzepkowska M (2020) Dietary risk evaluation of acrylamide intake with bread in Poland, determined by two comparable cleanup procedures. Food Addit Contam Part B 13:1–9

    CAS  Google Scholar 

  • Saita K, Ohi T, Hanaoka Y, Furukawa S, Furukawa Y, Hayashi K, Matsukura S (1996) A catechol derivative (4-methylcatechol) accelerates the recovery from experimental acrylamide-induced neuropathy. J Pharmacol Exp Ther 276:231–237

    CAS  Google Scholar 

  • Salazar R, Arámbula-Villa G, Vázquez-Landaverde PA, Hidalgo FJ, Zamora R (2012) Mitigating effect of amaranth (Amarantus hypochondriacus) protein on acrylamide formation in foods. Food Chem 135:2293–2298

    CAS  Google Scholar 

  • Sayre LM, Autilio-Gambetti L, Gambetti P (1985) Pathogenesis of experimental giant neurofilamentous axonopathies: a unified hypothesis based on chemical modification of neurofilaments. Brain Res 357:69–83

    CAS  Google Scholar 

  • Shamla L, Nisha P (2017) Acrylamide formation in plantain (Musa paradisiaca) chips influenced by different ripening stages: a correlation study with respect to reducing sugars, amino acids and phenolic content. Food Chem 222:53–60

    CAS  Google Scholar 

  • Shinomol GK, Raghunath N, Bharath MM, Muralidhara (2013) Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function. Cent Nerv Syst Agents Med Chem 13:3–12

    CAS  Google Scholar 

  • Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC (2002) Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res 16:256–260

    Google Scholar 

  • Sickles DW, Goldstein BD (1986) Acrylamide produces a direct, dose dependent and specific inhibition of oxidative metabolism in motoneurons. Neurotoxicology 7:187–195

    CAS  Google Scholar 

  • Sickles DW, Stone JD, Friedman MA (2002) Fast axonal transport: a site of acrylamide neurotoxicity? Neurotoxicology 23:223–251

    CAS  Google Scholar 

  • Soares MVL, Alves Filho EG, Silva LMA, Novotny EH, Canuto KM, Wurlitzer NJ, Narain N, de Brito ES (2017) Tracking thermal degradation on passion fruit juice through nuclear magnetic resonance and chemometrics. Food Chem 219:1–6

    CAS  Google Scholar 

  • SohnM HC-T (1995) Ammonia generation during thermal degradation of amino acids. J Agric Food Chem 43:3001–3003

    Google Scholar 

  • Sporel-Ozakat RE, Edwards PM, Van der Hoop RG, Gispen WH (1990) An ACTH-(4-9) analogue, Org 2766, improves recovery from acrylamide neuropathy in rats. Eur J Pharmacol 186:181–187

    CAS  Google Scholar 

  • Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M-C, Riediker S (2002) Acrylamide from Maillard reaction products. Nature 419:449–450

    CAS  Google Scholar 

  • Stadler RH, Robert F, Riediker S, Varga N, Davidek T, Devaud S, Goldmann T, Hau J, Blank I (2004) In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J Agric Food Chem 52:5550–5558

    CAS  Google Scholar 

  • Sterman AB (1983) Altered sensory ganglia in acrylamide neuropathy. Quantitative evidence of neuronal reorganization. Journal of neuropathology and experimental neurology 42:166–176

    CAS  Google Scholar 

  • Sung W-C, Chang Y-W, Chou Y-H, Hsiao H-I (2018) The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans. Food Chem 243:141–144

    CAS  Google Scholar 

  • Swaen GM, Haidar S, Burns CJ, Bodner K, Parsons T, Collins JJ, Baase C (2007) Mortality study update of acrylamide workers. Occup Environ Med 64:396–401

    CAS  Google Scholar 

  • Tagaya M, Wilson DW, Brunner M, Arango N, Rothman JE (1993) Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J Biol Chem 268:2662–2666

    CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2000) Acrylamide: a cooking carcinogen? Chem Res Toxicol 13:517–522

    CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    CAS  Google Scholar 

  • Tolar LA, Pallanck L (1998) NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J Neurosci 18:10250–10256

    CAS  Google Scholar 

  • Törnqvist M (2005) Acrylamide in food: the discovery and its implications: a historical perspective. Adv Exp Med Biol 561:1–19

    Google Scholar 

  • Tsujinaka T, Kajiwara Y, Kambayashi J, SakonM HN, Tanaka T, Mori T (1988) Synthesis of a new cell penetrating calpain inhibitor (calpeptin). Biochem Biophys Res Commun 153:1201–1208

    CAS  Google Scholar 

  • Vanitha S, Thiagarajan VR, Muthuraman A, Krishnan S, Aruna A, Tharabai R (2015) Pharmacological evaluation of methanolic leaf extract of Swietenia mahagoni on acrylamide-induced neuropathic pain in rats. Toxicol Ind Health 31:1185–1194

    CAS  Google Scholar 

  • Vinci RM, Mestdagh F, De Meulenaer B (2012) Acrylamide formation in fried potato products–present and future, a critical review on mitigation strategies. Food Chem 133:1138–1154

    Google Scholar 

  • Watanabe T, Kaji R, Oka N, Bara W, Kimura J (1994) Ultra-high dose methylcobalamin promotes nerve regeneration in experimental acrylamide neuropathy. J Neurol Sci 122:140–143

    CAS  Google Scholar 

  • Wei X, Yan F, Zhang EM, Li C, Yang G, Zhang X, Wang F, Yu S (2015) Neuroprotective effect of calpeptin on acrylamide-induced neuropathy in rats. Neurochem Res 40:2325–2332

    CAS  Google Scholar 

  • Whiteheart SW, Rossnagel K, Buhrow SA, Brunner M, Jaenicke R, Rothman JE (1994) N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J Cell Biol 126:945–954

    CAS  Google Scholar 

  • Wiberley-Bradford AE, Bethke PC (2017) Rate of cooling alters chip color, sugar contents, and gene expression profiles in stored potato tubers. Am J Potato Res 94:534–543

    CAS  Google Scholar 

  • Wnorowski A, Yaylayan VA (2003) Monitoring carbonyl-amine reaction between pyruvic acid and α-amino alcohols by FTIR spectroscopya possible route to Amadori products. J Agric Food Chem 51:6537–6543

    CAS  Google Scholar 

  • Xiao J, Niu K, Meng H, Cui T, Li Z, Li B (2009) Effects of calcium way of Schwann cells on damage of peripheral nerve induced by acrylamide. Wei sheng yan jiu = Journal of Hygiene Research 38:641–644

    Google Scholar 

  • Xichun Z (2009) Long-term exposure to various types of dietary fat modulates acrylamide-induced preneoplastic lesions of colonmucosa through Wnt/beta-catenin signaling in rats. Toxicol Mech Methods 19:285–291

    Google Scholar 

  • Xichun Z, Min’ai Z (2009) Protective role of dark soy sauce against acrylamide-induced neurotoxicity in rats by antioxidative activity. Toxicol Mech Methods 19:369–374

    Google Scholar 

  • Yang J, Powers J, Boylston T, Weller K (1999) Sugars and free amino acids in stored Russet Burbank potatoes treated with CIPC and alternative sprout inhibitors. J Food Sci 64:592–596

    CAS  Google Scholar 

  • Yaylayan VA, Wnorowski A, Perez Locas C (2003) Why asparagine needs carbohydrates to generate acrylamide. J Agric Food Chem 51:1753–1757

    CAS  Google Scholar 

  • Yaylayan VA, Perez Locas C, Wnorowski A, O’Brien J (2005) Mechanistic Pathways of formation of acrylamide from different amino acids. In: Friedman M, Mottram D (eds) Chemistry and safety of acrylamide in food. Springer US, Boston, MA, pp 191–203

    Google Scholar 

  • Yu S, Son F, Yu J, Zhao X, Yu L, Li G, Xie K (2006) Acrylamide alters cytoskeletal protein level in rat sciatic nerves. Neurochem Res 31:1197–1204

    CAS  Google Scholar 

  • Yu SF, Wei XM, Yan FF, Wang SE, Zhang CL, Yang XW (2015) The role of NF mRNA and calpain in NF reduction of acrylamide neuropathy. Biomed Environ Sci 28:445–448

    CAS  Google Scholar 

  • Zhang Y, Zhang Y (2007) Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Crit Rev Food Sci Nutr 47:521–542

    CAS  Google Scholar 

  • Zhang Y, Zhang G, Zhang Y (2005) Occurrence and analytical methods of acrylamide in heat-treated foods: review and recent developments. J Chromatogr A 1075:1–21

    CAS  Google Scholar 

  • Zhang Y, Chen J, Zhang X, Wu X, Zhang Y (2007) Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries. J Agric Food Chem 55:523–528

    CAS  Google Scholar 

  • Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP (2003) Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782–4787

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Contributions

Idea and design: M.B-J., A-F. M. A-F, E. M. S., H. R.E., M. M. A-D; data collection: M.B-J., A-F M. A-F, E. M. S., H. R.E., M. M. A-D; data analysis: M.B-J., A-F M. A-F, E. M. S., H. R.E., M. M. A-D; funding: M.B-J., M. M. A-D; manuscript writing: M.B-J., A-F M. A-F, E. M. S., H. R.E., M. M. A-D; manuscript revision: M.B-J., A-F M. A-F, E. M. S., H. R.E., M. M. A-D. All authors approved and confirmed this submission.

Corresponding author

Correspondence to Mohamed M. Abdel-Daim.

Ethics declarations

Consent for publication

All authors approve this submission.

Consent to participate

Not applicable as the study did not include human subject.

Ethics approval

Not applicable for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin-Jumah, M., Abdel-Fattah, AF.M., Saied, E.M. et al. Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. Environ Sci Pollut Res 28, 13031–13046 (2021). https://doi.org/10.1007/s11356-020-12287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12287-6

Keywords

Navigation