Toward ecological function zoning and comparison to the Ecological Redline Policy: a case study in the Poyang Lake Region, China

Abstract

Faced with huge environmental problems of ecosystem degradation, “Ecological Redline Policy (ERP)” in China is a new key national-level policy to manage different land use functions in accordance with development and environmental limits. As the water–land complex ecosystem with the largest freshwater lake, wetland natural reserves and ecological importance in China, Poyang Lake Region (PLR) is selected to quantify and map multiple ecosystem services, investigate the ecological function zoning as part of research on ecological zoning control and major ecological source areas to illustrate and address the implementation of this strategy based on the importance and vulnerability analysis of ecosystem services. According to ecological function zoning results, extremely important, highly important, medium important and important zones respectively account for 26.1%, 28.1%, 17.4% and 28.4% of the total area. With an area of 5422.2 km2, the extremely important zone is 1010.6 km2 larger than the ERP. Moreover, 81.6% of the ERP is located in the extremely important zone. By discussing the implications and applications of ecological management, this study contributes to the ecological protection of Poyang Lake and provides a foundation for research on ecological function zoning at the regional scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Antonidze K (2010) ICZM in the Black Sea Region: experience and perspectives. J Coast Conserv 14(4) :265-272. https://doi.org/10.1007/s11852-009-0067-6

  2. Arunyawat S, Shrestha R (2016) Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability 8(8):768. https://doi.org/10.3390/su8080768

    Article  Google Scholar 

  3. Bai Y, Jiang B, Wang M et al (2016) New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 55:348–351. https://doi.org/10.1016/j.landusepol.2015.09.002

    Article  Google Scholar 

  4. Bailey RG (1998) Ecoregions: the ecosystem geography of the oceans and continents. Springer-Verlag, New York, USA https://doi.org/10.1007/978-1-4939-0524-9

  5. Bailey RG (2014) Ecoregions: the ecosystem geography of the oceans and continents. 2nd. Spring-Verlag, New York. USA. https://doi.org/10.1007/978-1-4939-0523-2

  6. Bloom DE, Canning D, Fink G (2008) Urbanization and the wealth of nations. Science 319:772–775. https://doi.org/10.1126/science.1153057

    CAS  Article  Google Scholar 

  7. Bradford JB, D'Amato AW (2012) Recognizing trade-offs in multi-objective land management. Front Ecol Environ 10(4):210–216. https://doi.org/10.1890/110031

    Article  Google Scholar 

  8. Brown G, Glanz H (2018) Identifying potential NIMBY and YIMBY effects in general land use planning and zoning. Appl Geogr 99:1–11. https://doi.org/10.1016/j.apgeog.2018.07.026

    Article  Google Scholar 

  9. BSEP ICZM RAC (2004) Methodology for spatial planning within integrated coastal zone management. In: Europaid TACIS Project

  10. Cao SX (2008) Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ Sci Technol 42:1826–1831. https://doi.org/10.1021/es0870597

    CAS  Article  Google Scholar 

  11. Chen D, Jin G, Zhang Q et al (2016) Water ecological function zoning in Heihe River Basin, Northwest China. Phys Chem Earth Parts A/B/C 96:74–83. https://doi.org/10.1016/j.pce.2016.08.005

    Article  Google Scholar 

  12. Chen YJ, Yu ZR, Li XD et al (2018) How agricultural multiple ecosystem services respond to socioeconomic factors in Mengyin County, China. Sci Total Environ 630:1003–1015. https://doi.org/10.1016/j.scitotenv.2018.02.187

    CAS  Article  Google Scholar 

  13. Cheruvelil KS, Yuan S, Webster KE et al (2017) Creating multithemed ecological regions for macroscale ecology: testing a flexible, repeatable, and accessible clustering method. Ecol Evol 7(9):3046–3058. https://doi.org/10.1002/ece3.2884

    Article  Google Scholar 

  14. Chu L, Sun T, Wang T et al (2018) Evolution and prediction of landscape pattern and habitat quality based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability 10(11):3854. https://doi.org/10.3390/su10113854

    Article  Google Scholar 

  15. CMEP (2014) The National Ecological Protection Red Line - technical guidelines for the delineation of ecological functions red line (trial) (In Chinese). (No. 2014.1). Chinese Ministry of Environmental Protection, Beijing, China

  16. CMEP (2015) Technology guide for ecological red line (In Chinese). (No. 2015.5). Chinese Ministry of Environmental Protection, Beijing, China.

  17. Dinerstein E, Olson D, Joshi A et al (2017) An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67(6):534–545. https://doi.org/10.1093/biosci/bix014

    Article  Google Scholar 

  18. Fallah BN, Partridge MD, Olfert MR (2011) Urban sprawl and productivity, Evidence from US metropolitan areas. Pap Reg Sci 90(3):451–472. https://doi.org/10.1111/j.1435-5957.2010.00330.x

    Article  Google Scholar 

  19. Fan J, Li P (2009) The scientific foundation of major function oriented zoning in China. J Geogr Sci 19:515–531. https://doi.org/10.1007/s11442-009-0515-0

    Article  Google Scholar 

  20. Fisher B, Turner RK, Burgess ND et al (2011) Measuring, modeling and mapping ecosystem services in the Eastern Arc Mountains of Tanzania. Prog Phys Geogr 35(5):595–611. https://doi.org/10.1177/0309133311422968

    Article  Google Scholar 

  21. Geneletti D, Van Duren I (2008) Protected area zoning for conservation and use: a combination of spatial multicriteria and multiobjective evaluation. Landsc Urban Plan 85(2):97–110. https://doi.org/10.1016/j.landurbplan.2007.10.004

    Article  Google Scholar 

  22. Goldstein JH, Caldarone G, Duarte TK et al (2012) Integrating ecosystem-service tradeoffs into land-use decisions. Proc Natl Acad Sci 109(19):7565–7570. https://doi.org/10.1073/pnas.1201040109

    Article  Google Scholar 

  23. Gong JZ, Jiang C, Chen W et al (2018) Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou: insights from zoning. Habitat Int 82:104–112. https://doi.org/10.1016/j.habitatint.2018.10.004

    Article  Google Scholar 

  24. Groot DRS, Wilson MA, Boumans RM (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408. https://doi.org/10.1016/S0921-8009(02)00089-7

    Article  Google Scholar 

  25. Hu CH, Ruan BQ, Zhang SH (2017) Evolution and regulation of the relationship between the Yangtze river and Dongting Lake and Poyang Lake. Science Press, Beijing, China

    Google Scholar 

  26. IPCC (2014) Climate change 2014-Impacts, adaptation and vulnerability: regional aspects. Intergovernmental Panel On Climate Change. UK, Cambridge

    Google Scholar 

  27. Kremer P, Hamstead ZA (2016) The value of urban ecosystem services in New York City: a spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environ Sci Pol 62:57–68. https://doi.org/10.1016/j.envsci.2016.04.012

    Article  Google Scholar 

  28. Li X, Yang J, Huang S et al (2016) Environmental factors contributing to avian influenza risk in Poyang Lake region, China. Environ Earth Sci 75:1292. https://doi.org/10.1007/s12665-016-6080-9

    Article  Google Scholar 

  29. Lu WH, Liu J, Xiang XQ et al (2015) A comparison of marine spatial planning approaches in China: Marine functional zoning and the marine ecological red line. Mar Policy 62:94–101. https://doi.org/10.1016/j.marpol.2015.09.004

    Article  Google Scholar 

  30. Lyu RF, Zhang JM, Xu MQ et al (2018) Impacts of urbanization on ecosystem services and their temporal relations: a case study in Northern Ningxia, China. Land Use Policy 77:163–173. https://doi.org/10.1016/j.landusepol.2018.05.022

    Article  Google Scholar 

  31. Martín-López B, Palomo I, García-Llorente M et al (2017) Delineating boundaries of social-ecological systems for landscape planning: a comprehensive spatial approach. Land Use Policy 66:90–104. https://doi.org/10.1016/j.landusepol.2017.04.040

    Article  Google Scholar 

  32. Moreira M, Fonseca C, Vergílio M, Calado H, Gil A (2018) Spatial assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores Portugal). Land Use Policy 78 :637-649. https://doi.org/10.1016/j.landusepol.2018.07.015

  33. Nandy S, Sing CS, Das KK et al (2015) Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecol Indic 57:182–195. https://doi.org/10.1016/j.ecolind.2015.04.024

    Article  Google Scholar 

  34. Nelson E, Mendoza G, Regetz J et al (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11. https://doi.org/10.1890/080023

    Article  Google Scholar 

  35. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11):933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  36. Ootegem VL, Verhofstadt E, Herck VK et al (2015) Multivariate pluvial flood damage models. Environ Impact Assess Rev 54:91–100. https://doi.org/10.1016/j.eiar.2015.05.005

    Article  Google Scholar 

  37. Ouyang ZY, Zheng H, Xiao Y et al (2016) Improvements in ecosystem services from investments in natural capital. Science 353:1455–1459. https://doi.org/10.1126/science.aaf2295

    CAS  Article  Google Scholar 

  38. Perera AH, Baker JA, Band LE et al (1996) A strategic framework to eco-regionalize Ontario. In Global to Local: Ecological Land Classification. Environmental Monitoring and Assessment 39:85 https://doi.org/10.1007/BF00396138

  39. Pham TG, Degener J, Kappas M (2018) Integrated universal soil loss equation (USLE) and geographical information system (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int Soil Water Conserv Res 6(2):99–110. https://doi.org/10.1016/j.iswcr.2018.01.001

    Article  Google Scholar 

  40. Ricaurte LF, Olaya-Rodríguez MH, Cepeda-Valencia J et al (2017) Future impacts of drivers of change on wetland ecosystem services in Colombia. Glob Environ Chang 44:158–169. https://doi.org/10.1016/j.gloenvcha.2017.04.001

    Article  Google Scholar 

  41. Sarkar S, Justus J, Fuller T, Kelley C, Garson J, Mayfield M (2005) Effectiveness of environmental surrogates for the selection of conservation area networks. Conserv Biol 19:815–825. https://doi.org/10.1111/j.1523-1739.2005.00236.x

    Article  Google Scholar 

  42. Şeker DZ, Tanık A, Çitil E et al (2016) Importance and vulnerability analyses for functional zoning in a coastal district of Turkey. International Journal of Environment and Geoinformatics 3(3):76-91 https://doi.org/10.30897/ijegeo.306484

  43. Sharp R, Tallis H, Ricketts T et al (2018) InVEST 3.5.0 user’s guide. The Natural Capital Project, USA

  44. Shaw MR, Pendleton L, Cameron DR et al (2011) The impact of climate change on California’s ecosystem services. Clim Chang 109(1):465–484. https://doi.org/10.1007/s10584-011-0313-4

    Article  Google Scholar 

  45. Sievert NA, Paukert CP, Tsang Y, Infante D (2016) Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration. Ecol Indic 67:403–416. https://doi.org/10.1016/j.ecolind.2016.03.013

    Article  Google Scholar 

  46. SOA (2012) The National Marine Functional Zoning (2011-2020). State Oceanic Administration of China. Beijing, China

    Google Scholar 

  47. Song G, Li Z, Yang Y, Semakula HM, Zhang S (2015) Assessment of ecological vulnerability and decision-making application for prioritizing roadside ecological restoration: A method combining geographic information system, Delphi survey and Monte Carlo simulation. Ecol Indic 52:57–65. https://doi.org/10.1016/j.ecolind.2014.11.032

    Article  Google Scholar 

  48. Sun X, Crittenden JC, Li F et al (2018) Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci Total Environ 622:974–987. https://doi.org/10.1016/j.scitotenv.2017.12.062

    CAS  Article  Google Scholar 

  49. Tallis H, Ricketts T, Guerry A et al (2011) Integrated valuation of ecosystem services and tradeoffs. The Natural Capital Project, USA

    Google Scholar 

  50. Wang CY, Pan DL (2017) Zoning of Hangzhou Bay ecological red line using GIS-based multi-criteria decision analysis. Ocean Coast Manag 139:42–50. https://doi.org/10.1016/j.ocecoaman.2017.01.013

    Article  Google Scholar 

  51. Wang Y, Li Z, Tang ZH, Zeng GM (2011) A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region Hunan Central China. Water Resour Manag 25(13):3465–3484. https://doi.org/10.1007/s11269-011-9866-2

    Article  Google Scholar 

  52. Wang Y, Atallah S, Shao G (2017) Spatially explicit return on investment to private forest conservation for water purification in Indiana, USA. Ecosyst Serv 26:45–57. https://doi.org/10.1016/j.ecoser.2017.06.004

    Article  Google Scholar 

  53. Wiens JA, Bruce TM (1989) Scaling of ‘landscapes’ in landscape ecology or landscape ecology from a beetle’s perspective. Landsc Ecol 3(2):87–96 https://10.1007/bf00131172

    Article  Google Scholar 

  54. Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: guide for selection of practices for soil and water conservation. USDA, Washiington, D.C., USA

    Google Scholar 

  55. Wu JG (1999) Hierarchy and scaling: extrapolating Information along a scaling ladder. Can J Remote Sens 25(4):367–380 https://10.1080/07038992.1999.10874736

    Article  Google Scholar 

  56. Wu Y, Tao Y, Yang G, Ou W, Pueppke S, Sun X, Chen G, Tao Q (2019) Impact of land use change on multiple ecosystem services in the rapidly urbanizing Kunshan City of China: past trajectories and future projections. Land Use Policy 85:419–427. https://doi.org/10.1016/j.landusepol.2019.04.022

    Article  Google Scholar 

  57. Xie DM, Jin G, Zhou YM et al (2013) Ecological function zoning of Poyang lake wetland: A RAMSAR site in china. Water Policy 15(6):922–935. https://doi.org/10.2166/wp.2013.181

    Article  Google Scholar 

  58. Yang GS, Zhang QZ, Wan RR et al (2016) Lake hydrology, water quality and ecology impacts of altered river-lake interactions: advances in research on the middle Yangtze river. Hydrol Res 47(S1):1–7. https://doi.org/10.2166/nh.2016.003

    CAS  Article  Google Scholar 

  59. Zhang BP, Mo SG, Tan Y et al (2004) Urbanization and de-urbanization in mountain regions of China. Mt Res Dev 24:206–209. https://doi.org/10.1659/0276-4741(2004)024[0206:UADIMR]2.0.CO;2

    Article  Google Scholar 

  60. Zhang LW, Lv YH, Fu B et al (2017) Mapping ecosystem services for China’s ecoregions with a biophysical surrogate approach. Landsc Urban Plan 161:22–31. https://doi.org/10.1016/j.landurbplan.2016.12.015

    Article  Google Scholar 

  61. Zhang JF, Liu CY, Chang F (2019) A new approach for multifunctional zoning of territorial space: the Panxi Area of the Upper Yangtze River in China case study. Sustainability 11(8):2325. https://doi.org/10.3390/su11082325

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to the anonymous reviewers and editors for their valuable comments and suggestions.

Funding

This study was supported by the Key Research Program of the Chinese Academy of Sciences (Grant KFZD-SW-318), the National Natural Science Foundation of China (Grant 42071146) and the National Natural Science Foundation of China (Grant 41701097).

Author information

Affiliations

Authors

Contributions

Conceptualization: Chen Xu, Guishan Yang and Rongrong Wan; Methodology: Chen Xu and Peng Wang; Formal analysis and investigation: Chen Xu; Writing—original draft preparation: Chen Xu; Writing—review and editing: Chen Xu, Guishan Yang, Rongrong Wan and Weixin Ou; Funding acquisition, Resources and Supervision: Guishan Yang and Rongrong Wan.

Corresponding authors

Correspondence to Guishan Yang or Rongrong Wan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yang, G., Wan, R. et al. Toward ecological function zoning and comparison to the Ecological Redline Policy: a case study in the Poyang Lake Region, China. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-020-12225-6

Download citation

Keywords

  • Ecosystem services
  • Ecological function zoning
  • Ecological Redline Policy
  • Importance analysis
  • Vulnerability analysis