A scientometric analysis of ecotoxicological studies with the herbicide atrazine and microalgae and cyanobacteria as test organisms

Abstract

Atrazine (ATZ) is one of the most widely used herbicides in the world. A scientometric study was conducted to analyze the evolution of research on ATZ. The study also looked at the use of microalgae and cyanobacteria as biological models for toxicity tests during the period from 1959 to 2019, in the category of toxicology of Web of Science. The results show an increase in the number of scientific publications mainly in the USA, Canada, and China. The majority of papers was published in journals with high impact factors, demonstrating the relevance of such studies. About 83% of the studies aimed to evaluate the effect of ATZ on non-target organisms. From those, 7.5% included microalgae and cyanobacteria. The majority of them worked with chlorophyceae to perform toxicity bioassays of ATZ and analyze its sublethal effects. The gaps identified by this analysis included a small number of collaborations between research groups from different countries; the number of studies with terrestrial organisms, which are larger in comparison to aquatic organisms; and the fact that none of the studies with ATZ and microalgae was performed in the field. These findings can point out to researchers and funding agencies the gaps in knowledge on the toxic effects of ATZ and guide the development of new research projects as well as environmental policies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The authors declare that (the/all other) data supporting the findings of this study are available within the article (and its supplementary information files).

References

  1. Abt AH (2007) The future of single-authored papers. Scientometrics 73:353–358. https://doi.org/10.1007/s11192-007-1822-9

    CAS  Article  Google Scholar 

  2. Aria M, Cuccurullo C (2017) Bibliometrix: an R-tool for comprehensive science mapping analysis. J Inf Secur 11:959–975. https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  3. Barbosa F, Scneck F, Melo A (2012) Use of ecological niche models to predict the distribution of invasive species : a scientometric analysis. Braz J Biol 72:821–829. https://doi.org/10.1590/S1519-69842012000500007

    CAS  Article  Google Scholar 

  4. Barboza LGA, Gimenez BCG (2015) Microplastics in the marine environment : current trends and future perspectives. Mar Pollut Bull 97:5–12. https://doi.org/10.1016/j.marpolbul.2015.06.008

    CAS  Article  Google Scholar 

  5. Baxter L, Brain RA, Lissemore L, Solomon KR, Hanson ML, Prosser RS (2016) Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: implications for the risk assessment of herbicides. Ecotoxicol Environ Saf 132:250–259. https://doi.org/10.1016/j.ecoenv.2016.06.022

    CAS  Article  Google Scholar 

  6. Blaise C, Gagné F (2009) Bioassays and biomarkers, two pillars of ecotoxicology: past, present and prospective uses. Fresenius Environ Bull 18:135–139

    CAS  Google Scholar 

  7. Blettler MCM, Abrial E, Khan FR, Sivri N, Espinola LA (2018) Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps. Water Res 143:416–424. https://doi.org/10.1016/j.watres.2018.06.015

    CAS  Article  Google Scholar 

  8. Casabé N, Piola L, Fuchs J, Oneto ML, Pamparato L, Basack S, Giménez R, Massaro R, Papa JC, Kesten E (2007) Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an argentine soya field. J Soils Sediments 7:232–239. https://doi.org/10.1065/jss2007.04.224

    CAS  Article  Google Scholar 

  9. Castro BB, Guilhermino L, Ribeiro R (2003) In situ bioassay chambers and procedures for assessment of sediment toxicity with Chironomus riparius. Environ Pollut 125:325–335. https://doi.org/10.1016/S0269-7491(03)00120-9

    CAS  Article  Google Scholar 

  10. Cavalier-Smith T (2004) Only six kingdoms of life. Proc R Soc 271:1251–1262. https://doi.org/10.1098/rspb.2004.2705

    CAS  Article  Google Scholar 

  11. Chalifour A, LeBlanc A, Sleno L, Juneau P (2016) Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: effects of acclimation and mixed cultures, and their removal ability. Ecotoxicology 25:1822–1831. https://doi.org/10.1007/s10646-016-1728-5

    CAS  Article  Google Scholar 

  12. Chappie DJ, Junior Burton GA (2000) Applications of aquatic and sediment toxicity testing in situ. Soil Sediment Contam 9:219–245

    CAS  Google Scholar 

  13. Chelinho S, Moreira-Santos M, Silva C, Costa C, Viana P, Viegas CA, Fialho AM, Ribeiro R, Sousa JP (2012) Semifield testing of a bioremediation tool for atrazine-contaminated soils: evaluating the efficacy on soil and aquatic compartments. Environ Toxicol Chem 31:1564–1572. https://doi.org/10.1002/etc.1840

    CAS  Article  Google Scholar 

  14. Chintapenta LK, Coyne KJ, Pappas A, Lee K, Dixon C, Kalavacharla V, Ozbay G (2018) Diversity of diatom communities in Delaware tidal wetland and their relationship to water quality. Front Environ Sci 6:1–15. https://doi.org/10.3389/fenvs.2018.00057

    Article  Google Scholar 

  15. Chisti Y (2004) Microalgae: our marine forests. In: Richmond A (ed) Andbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, p 566

    Google Scholar 

  16. Cid Á, Prado R, Rioboo C, Suarez-bregua P (2012) Use of microalgae as biological indicators of pollution : looking for new relevant cytotoxicity endpoints. In: Johsen MN (ed) Microalgae: biotechnology, Microbiology and Energy. Science Publishers, New York, pp 311–323

    Google Scholar 

  17. Core Team R (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Retrieved from https://www.R-project.org/

    Google Scholar 

  18. De Albuquerque FP, De Oliveira JL, Moschini-Carlos V, Fraceto LF (2020) An overview of the potential impacts of atrazine in aquatic environments: perspectives for tailored solutions based on nanotechnology. Sci Total Environ 700:134868. https://doi.org/10.1016/j.scitotenv.2019.134868

  19. de Castilhos Ghisi N, Zuanazzi NR, Fabrin TMC, De Oliveira EC (2020) Glyphosate and its toxicology: a scientometric review. Sci Total Environ 139359. https://doi.org/10.1016/j.scitotenv.2020.139359

  20. De Souza RM, Seibert D, Quesada HB et al (2019) Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf Environ Prot 135:22–37. https://doi.org/10.1016/j.psep.2019.12.035

    CAS  Article  Google Scholar 

  21. DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20:84–98. https://doi.org/10.1002/etc.5620200108

    CAS  Article  Google Scholar 

  22. Didur O, Perreault F, Oukarroum A, Dewez D, Popovic R (2012) Alteration of photosystem II activity by atrazine on Chlamydomonas reinhardtii synchronized and asynchronized cell cycle cultures. Toxicol Enviromental Chem 95:906–917. https://doi.org/10.1080/02772248.2012.686617

    CAS  Article  Google Scholar 

  23. El-Sheekh MM, Kotkat HM, Hammouda OHE (1994) Effect of atrazine herbicide on growth, photosynthesis, protein synthesis, and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicol Environ Saf 29:349–358. https://doi.org/10.1016/0147-6513(94)90007-8

    CAS  Article  Google Scholar 

  24. EPA. Eco Update (1994) Using toxicity tests in ecological risk assessment

  25. Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á (2015) Chlamydomonas reinhardtii cells adjust the metabolism to maintain viability in response to atrazine stress. Aquat Toxicol 165:64–72. https://doi.org/10.1016/j.aquatox.2015.05.012

    CAS  Article  Google Scholar 

  26. Esteves SM, Almeida SFP, Rimet SGF, Figueira ABE (2018) Sensitive vs tolerant Nitzschia palea (Kützing) W. Smith strains to atrazine: a biochemical perspective. Ecotoxicology 27:1–11. https://doi.org/10.1007/s10646-018-1953-1

    CAS  Article  Google Scholar 

  27. Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105. https://doi.org/10.1002/ps.3598

    CAS  Article  Google Scholar 

  28. Glanzel W, Schubert A, Czerwon HJ (1999) A bibliometric analysis of internacional scientific cooperation of the European Union (1985-1995). Scientometrics 45(2):185–202. https://doi.org/10.1007/BF02458432

    Article  Google Scholar 

  29. González-Barreiro O, Rioboo C, Herrero C, Cid A (2006) Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut 144:266–271. https://doi.org/10.1016/j.envpol.2005.12.014

    CAS  Article  Google Scholar 

  30. Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495. https://doi.org/10.1016/S0160-4120(01)00031-9

    CAS  Article  Google Scholar 

  31. Hornstrom E (1990) Toxicity test with algae-a discussion on the batch method. Ecotoxicol Environ Saf 353:343–353. https://doi.org/10.1016/0147-6513(90)90011-S

    Article  Google Scholar 

  32. HSI (2015) Testing of pesticides with animals. Humane Society International. https://www.hsi.org/news-media/testes-agrotoxicos-animais/?lang=pt-br. Accessed: June 2020

  33. Jablonowski ND, Schäffer A, Burauel P (2011) Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ Sci Pollut Res 18:328–331. https://doi.org/10.1007/s11356-010-0431-y

    CAS  Article  Google Scholar 

  34. Jang Y, Kim J, Jeong S, Cho M (2014) Towards a strategic approaches in alternative tests for pesticide safety. Toxicol Res (Camb) 30:159–168. https://doi.org/10.5487/TR.2014.30.3.159

    Article  Google Scholar 

  35. Jones TW, Kemp WM, Estes PS, Stevenson JC (1986) Atrazine uptake, photosynthetic inhibition, and short-term recovery for the submersed vascular plant, Potamogeton perfoliatus L. Arch Environ Contam Toxicol 283:277–283. https://doi.org/10.1007/BF01061104

    Article  Google Scholar 

  36. Kabra AN, Ji MK, Choi J, Kim JR, Govindwar SP, Jeon BH (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga Chlamydomonas mexicana. Environ Sci Pollut Res 21:12270–12278. https://doi.org/10.1007/s11356-014-3157-4

    CAS  Article  Google Scholar 

  37. Katz JS (1994) Geographical proximity and scientific collaboration. Scientometrics 31:31–43. https://doi.org/10.1007/BF02018100

    Article  Google Scholar 

  38. Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science (80-) 341:759–765. https://doi.org/10.1126/science.1237591

    CAS  Article  Google Scholar 

  39. Lewis MA (1995) Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 87:319–336. https://doi.org/10.1016/0269-7491(94)P4164-J

    CAS  Article  Google Scholar 

  40. Li LL, Ding G, Feng N, Wang MH, Ho YS (2009) Global stem cell research trend: bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics 80:39–58. https://doi.org/10.1007/s11192-008-1939-5

    CAS  Article  Google Scholar 

  41. Li K, Rollins J, Yan E (2018) Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics 115:1–20. https://doi.org/10.1007/s11192-017-2622-5

    Article  Google Scholar 

  42. Lockert CK, Hoagland KD, Siegfried BD (2006) Comparative sensitivity of freshwater algae to atrazine. Bull Environ Contam Toxicol 76:73–79. https://doi.org/10.1007/s00128-005-0891-9

    CAS  Article  Google Scholar 

  43. Lozano P, Trombini C, Crespo E, Blasco J, Moreno-Garrido I (2014) ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol Environ Saf 104:294–301. https://doi.org/10.1016/j.ecoenv.2014.03.021

    CAS  Article  Google Scholar 

  44. Lytle JS, Lytle TF (2001) Use of plants for toxicity assessment of estuarine ecosystems. Environ Toxicol Chem 20(1):68–83. https://doi.org/10.1897/1551-5028(2001)020<0068:uopfta>2.0.co;2

    CAS  Article  Google Scholar 

  45. Manoylov KM (2014) Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implocations for ecological bioassessment. J Phycol 424:409–424. https://doi.org/10.1111/jpy.12183

    Article  Google Scholar 

  46. Mascarenhas C, Ferreira JJ, Marques C (2018) University-industry cooperation: a systematic literature review and research agenda. Sci Public Policy 45:708–718. https://doi.org/10.1093/SCIPOL/SCY003

    Article  Google Scholar 

  47. Mccormick PV, Cairns J (1994) Algae as indicators of environmental change. J Appl Phycol 6:509–526

    Article  Google Scholar 

  48. Mingers J, Leydesdorff L (2015) A review of theory and practice in scientometrics. Eur J Oper Res 246:1–19. https://doi.org/10.1016/j.ejor.2015.04.002

    Article  Google Scholar 

  49. Moreira-Santos M, Soares AMVM, Ribeiro R (2004) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 59:164–173. https://doi.org/10.1016/j.ecoenv.2003.07.004

    CAS  Article  Google Scholar 

  50. Nalewajko C, Olaveson MM (1998) Ecophysiological considerations in microalgal toxicity tests. In: Wells PG, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology, 1st edn. CRC Press, London, p 720

    Google Scholar 

  51. Nguyen TV, Pham LT (2011) Scientific output and its relationship to knowledge economy: an analysis of ASEAN countries. Scientometrics 89:107–117. https://doi.org/10.1007/s11192-011-0446-2

    Article  Google Scholar 

  52. OECD (2020), Researchers (indicator). https://doi.org/10.1787/20ddfb0f-en (Accessed on 30 October 2020)

  53. Pathak RK, Dikshit AK (2011) Atrazine and human health. International Journal of Ecosystem 1(1):14–23. https://doi.org/10.5923/j.ije.20110101.03

    Article  Google Scholar 

  54. Peters JW, Cook RM (1973) Effects of atrazine on reproduction in rats. Bull Environ Contam Toxicol 9:301–304. https://doi.org/10.1007/BF01684788

    CAS  Article  Google Scholar 

  55. Prado R, García R, Rioboo C, Herrero C, Abalde J, Cid A (2009) Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environ Int 35:240–247. https://doi.org/10.1016/j.envint.2008.06.012

    CAS  Article  Google Scholar 

  56. Rand GM, Petrocelli SR (1985) Fundamentals of aquatic toxicology, 1st edn. Washington : hemisphere pub. Corp., [1985], Washington

  57. Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237. https://doi.org/10.1007/s10311-017-0665-8

    CAS  Article  Google Scholar 

  58. Sun J, Pan LL, Zhang Y et al (2017) Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environ Geochesmistry Heal 39:369–378. https://doi.org/10.1007/s10653-016-9853-x

  59. Tang J, Hoagland KD, Siegfried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Biochemistry 17:1085–1090. https://doi.org/10.1897/1551-5028(1998)017<1085

    CAS  Article  Google Scholar 

  60. USEPA (United States Environmental Protection Agency) (2002) Registration eligibility science chapter for atrazine environmental fate and effects chapter. Washington, DC, USA

  61. Vallotton N, Eggen RIL, EScher BL et al (2008) Effect of pulse herbicidal exposure on Scenedesmus Vacuolatus: a comparison of two photosystem II inhibitors. Enviromental Toxicol Chem 27:1399–1407. https://doi.org/10.1897/07-197.1

    CAS  Article  Google Scholar 

  62. Van Der Kraak GJ, Hosmer AJ, Hanson ML et al (2014) Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 44:1–66. https://doi.org/10.3109/10408444.2014.967836

    CAS  Article  Google Scholar 

  63. Van Eck NJ, Waltman L (2010) Software survey : VOSviewer , a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  64. Vanzetto GV, Thom A (2019) Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. Environ Pollut 252:74–83. https://doi.org/10.1016/j.envpol.2019.05.092

    CAS  Article  Google Scholar 

  65. Veber K, Zahradnik J, Breyl I, Krédl F (1981) Toxic effect and accumulation of atrazine in algae. Bull Environ Contam Toxicol 27:872–876. https://doi.org/10.1007/BF01611110

    CAS  Article  Google Scholar 

  66. Wagner CS, Bornmann L, Leydesdorff L (2015) Recent developments in China–U.S. cooperation in science. Minerva 53:199–214. https://doi.org/10.1007/s11024-015-9273-6

    Article  Google Scholar 

  67. Weiner JA, DeLorenzo ME, Fulton MH (2004) Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aquat Toxicol 68:121–128. https://doi.org/10.1016/j.aquatox.2004.03.004

    CAS  Article  Google Scholar 

  68. Witze A (2016) Research gets increasingly international. Nat News. https://doi.org/10.1038/nature.2016.19198

  69. Xing-lu P, Feng-shou D, Xiao-hu W et al (2019) Progress of the discovery, application and control technologies of. J Integr Agric 3119:840–853. https://doi.org/10.1016/S2095-3119(18)61929-X

    Article  Google Scholar 

  70. Yang W (2016) Boost basic research in China. Nature 534:467–469. https://doi.org/10.1038/534467a

    Article  Google Scholar 

  71. Zagatto PA, Bertoletti E (2008) Ecotoxicologia Aquática: Princípios e aplicações, 2a. RiMa, São Carlos

  72. Zuanazzi NR, de Castilhos Ghisi N, Oliveira EC (2020) Analysis of global trends and gaps for studies about 2, 4-D herbicide toxicity: a scientometric review. Chemosphere 241:1–11. https://doi.org/10.1016/j.chemosphere.2019.125016

    CAS  Article  Google Scholar 

  73. Zyoud SH (2018) Investigating global trends in paraquat intoxication research from 1962 to 2015 using bibliometric analysis. Am J Ind Med 61:462–470. https://doi.org/10.1002/ajim.22835

    Article  Google Scholar 

  74. Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM (2017) Global research production in glyphosate intoxication from 1978 to 2015: a bibliometric analysis. Hum Exp Toxicol 36:997–1006. https://doi.org/10.1177/0960327116678299

    CAS  Article  Google Scholar 

Download references

Funding

Financial support was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Programa de Apoio à Pós-Graduação (PROAP) fellowship, Brazil, and Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq (Brazil). This research was supported in part by the International Foundation for Science, Stockholm, Sweden, through a grant to JZ (IFS I-2-A/5350-2) co-financed by the Organisation for the Prohibition of Chemical Weapons (OPCW). JZ is a productivity research fellow from CNPq (PQ 309605/2017-2).

Author information

Affiliations

Authors

Contributions

MSC and FGB conceived and designed the study. MSC conducted the literature search. MSC and FGB were involved in the analysis and interpretation of data. MSC and FGB drafted the manuscript. The study was supervised by FGB, PSG, CMDGM, and JZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliano Zanette.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable in this section.

Consent to participate

Not applicable in this section.

Consent for publication

Not applicable in this section.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Supplementary Information

ESM 1

(XLSX 90 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castro, M.S., Barbosa, F.G., Guimarães, P.S. et al. A scientometric analysis of ecotoxicological studies with the herbicide atrazine and microalgae and cyanobacteria as test organisms. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-020-12213-w

Download citation

Keywords

  • Chlorophyceae
  • Pesticide
  • Pollution
  • Research productivity
  • Web of Science
  • Toxicity