Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling

Abstract

The impacts of chlorination on methylparaben (MP) removal, as well as of bromide and ammonia on the MP elimination kinetics, were studied. Bromide and ammonia react with chlorine and are promptly transformed into bromine and chloramines, respectively. Rate constants of chlorine, bromine, and monochloramine with MP were determined under different pH conditions. At pH 8.5, the apparent second-order rate constants of MP reactions with chlorine and bromine were found to be 3.37(±0.50) × 101 and 2.37 (±0.11) × 106 M-1.s-1 for kChlorine/MP and kBromine/MP, respectively, yet there was low reactivity with monochloramine (\( {\mathrm{k}}_{{\mathrm{NH}}_2\mathrm{Cl}/\mathrm{MP}} \) = 0.045 M-1.s-1). Regarding chlorination and bromination, in order to gain further insight into the observed pH-dependence of the reaction, the elementary reactions were considered and the corresponding second-order rate constants were calculated. The experimental and modeled values were quite consistent under these conditions. Then, chlorination experiments with different bromide and/or ammonia concentrations were performed to assess the impact of inorganic water content on MP elimination and a kinetic model was designed to assess MP degradation. Under these conditions, MP degradation was found to be enhanced in the presence of bromide whereas it was inhibited in the presence of ammonia, and the overall impact was pH dependent.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data generated and/or analyzed during the current study are included in this published article

Abbreviations

pHBA:

p-Hydroxybenzoic acid

PCP:

Personal care products

MP:

Methylparaben

PP:

Propylparaben

WWTP:

Wastewater treatment plant

THM:

Trihalomethanes

EE2:

17α-ethynilestradiol

DOC:

Dissolved organic carbon

HPLC:

High-performance liquid chromatography

LOD:

Limit of detection

LSODA:

Livermore solver for ordinary differential equations

DPD:

N,N diethyl-p-phenylenediamine

References

  1. Abdallah P, Deborde M, Dossier Berne F, Karpel Vel Leitner N (2015) Kinetics of chlorination of benzophenone-3 in the presence of bromide and ammonia. Environ Sci Technol 49:14359–14367. https://doi.org/10.1021/acs.est.5b03559

    CAS  Article  Google Scholar 

  2. Acero JL, Piriou P, von Gunten U (2005) Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development. Water Res 39:2979–2993. https://doi.org/10.1016/j.watres.2005.04.055

    CAS  Article  Google Scholar 

  3. Benjits T, Lambert W, De Leenheer A (2004) Analysis of multiple endocrine disruptors in environmental water via wide-spectrum solid-phase extraction and dual-polarity ionization LC-ion trap-MS/MS. Anal Chem 76:704–711. https://doi.org/10.1021/ac035062x

    CAS  Article  Google Scholar 

  4. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. https://doi.org/10.1016/j.chemosphere.2010.11.018

    CAS  Article  Google Scholar 

  5. Canosa P, Rodríguez I, Rubí E, Negreira N, Cela R (2006) Formation of halogenated by-products of parabens in chlorinated water. Anal Chim Acta 575:106–113. https://doi.org/10.1016/j.aca.2006.05.068

    CAS  Article  Google Scholar 

  6. Casas Ferreira AM, Möder M, Fernández Laespada ME (2011) GC-MS determination of parabens, triclosans and methyl triclosan in water by in situ derivatization and stir-bar sorptive extraction. Anal Bioanal Chem 399:945–953. https://doi.org/10.1007/s00216-010-4339-7

    CAS  Article  Google Scholar 

  7. Chisholm K, Cook A, Bower C, Weinstein P (2008) Risk of birth defects in Australian communities with high levels of brominated disinfection by-products. Environ Health Perspect 116:1267–1273. https://doi.org/10.1289/ehp.10980

    CAS  Article  Google Scholar 

  8. Cimetiere N, Dossier-Berne F, De Laat J (2009) Monochloramination of resorcinol: mechanism and kinetic modeling. Environ Sci Technol 43:9380–9385. https://doi.org/10.1021/es901425n

    CAS  Article  Google Scholar 

  9. CIR (2008) Safety Review. Cosmetic Ingredient Review, Washington DC

    Google Scholar 

  10. Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS (2004) Concentrations of parabens in human breast tumors. J Appl Toxicol 24:5–13. https://doi.org/10.1002/jat.958

    CAS  Article  Google Scholar 

  11. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938. https://doi.org/10.1289/ehp.99107s6907

    CAS  Article  Google Scholar 

  12. Deborde M, von Gunten U (2008) Reactions of chlorine with ionorganic and organic compounds during water treatment – kinetics and mechanisms: A critical review. Water Res 42:13–51. https://doi.org/10.1016/j.watres.2007.07.025

    CAS  Article  Google Scholar 

  13. Dualde P, Pardo O, Fernández SF, Pastor A, Yusà V (2019) Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J Chromatogr B 1114-1115:154–166. https://doi.org/10.1016/j.jchromb.2019.03.004

    CAS  Article  Google Scholar 

  14. Duirk SE, Bridenstine DR, Leslie DC (2013) Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation. Water Res 47:579–587. https://doi.org/10.1016/j.watres.2012.10.021

    CAS  Article  Google Scholar 

  15. Echigo S (2002) Kinetics and speciation of brominated disinfection by-products during ozonation. Ph.D. Thesis, University of Illinois, Urbana-Champaign

  16. Galinaro CA, Pereira FM, Vieira EM (2015) Determination of parabens in surface water from Mogi Guaçu River (Sao Paulo, Brazil) using dispersive liquid-liquid microextraction based on low density solvent and LC-DAD. J Braz Chem Soc 26:2205–2213. https://doi.org/10.5935/0103-5053.20150206

    CAS  Article  Google Scholar 

  17. Gallard H, von Gunten U (2002) Chlorination of phenols: kinetics and formation of chloroform. Environ Sci Technol 36:884–890. https://doi.org/10.1021/es010076a

    CAS  Article  Google Scholar 

  18. Gallard H, Pellizzari F, Croué JP, Legube B (2003) Rate constants of reactions of bromine with phenols in aqueous solution. Water Res 37:2883–2892. https://doi.org/10.1016/S0043-1354(03)00132-5

    CAS  Article  Google Scholar 

  19. González-Mariño I, Quintana JB, Rodríguez I, Cela R (2009) Simultaneous determination of parabens, triclosan and triclocarban in water by liquid chromatography ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1756–1766. https://doi.org/10.1002/rcm.4069

    CAS  Article  Google Scholar 

  20. González-Mariño I, Quitana JB, Rodríguez I, Cela R (2011) Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Res 45:6770–6780. https://doi.org/10.1016/j.watres.2011.10.027

    CAS  Article  Google Scholar 

  21. Guo G, Lin F (2009) The bromination kinetics of phenolic compounds in aqueous solution. J Hazard Mater 170:645–651. https://doi.org/10.1016/j.jhazmat.2009.05.017

    CAS  Article  Google Scholar 

  22. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195. https://doi.org/10.1021/cr00002a004

    CAS  Article  Google Scholar 

  23. Hansch C, Leo A, Hoekman DH (1995) Exploring QSAR: Fundamentals and applications in chemistry and biology. American Chemical Society, Washington DC

    Google Scholar 

  24. Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U (2014) Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds – a critical review. Water Res 48:15–42. https://doi.org/10.1016/j.watres.2013.08.030

    CAS  Article  Google Scholar 

  25. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI- a Complex Pathway Simulator. Bioinformatics 22:3067–3074. https://doi.org/10.1093/bioinformatics/btl485

    CAS  Article  Google Scholar 

  26. Jamal A, Rastkari N, Dehghaniathar R, Aghaei M, Nodehi RN, Nasseri S, Kashani H, Yunesian M (2019) Prenatal exposure to parabens and anthropometric birth outcomes: a systematic review. Environ Res 173:419–431. https://doi.org/10.1016/j.envres.2019.02.044

    CAS  Article  Google Scholar 

  27. Jonkers N, Sousa A, Galante-Oliveira S, Barroso CM, Kohler HPE, Giger W (2010) Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environ Sci Pollut Res 17:834–843. https://doi.org/10.1007/s11356-009-0275-5

    CAS  Article  Google Scholar 

  28. Jonsson M, Lind J, Eriksen TE, Merényi G (1993) O-H bond strengths and one-electron reduction potentials of multisubstituted phenols and phenoxyl radicals. Predictions using free energy relationships. J Chem Soc Perkin Trans 2(2):1567–1568. https://doi.org/10.1039/P29930001567

    Article  Google Scholar 

  29. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518. https://doi.org/10.1016/j.watres.2008.04.026

    CAS  Article  Google Scholar 

  30. Kumar K, Margerum DW (1987) Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Chemistry 26:2706–2711. https://doi.org/10.1021/ic00263a030

    CAS  Article  Google Scholar 

  31. Lee Y, von Gunten U (2009) Transformation of 17alpha-ethinylestradiol during water chlorination effects of bromide on kinetics, products and transformation pathways. Environ Sci Technol 43:480–487. https://doi.org/10.1021/es8023989

    CAS  Article  Google Scholar 

  32. Liao C, Lee S, Moon HB, Yamashita N, Kannan K (2013) Parabens in sediment and sewage sludge from the United States, Japan and Korea: spatial distribution and temporal trends. Environ Sci Technol 47:10895–10902. https://doi.org/10.1021/es402574k

    CAS  Article  Google Scholar 

  33. Liebert N (1984) Final report on the safety assessment of methylparaben, ethylparaben, propylparaben and butylparaben. Int J Toxicol 3:147–209

    Google Scholar 

  34. Loraine GA, Pettigrove ME (2006) Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern Califormnia. Environ Sci Technol 40:687–695. https://doi.org/10.1021/es051380x

    CAS  Article  Google Scholar 

  35. Luh J, Mariñas BJ (2014) Kinetics of bromochloramine formation and decomposition. Environ Sci Technol 48:2843–2852. https://doi.org/10.1021/es4036754

    CAS  Article  Google Scholar 

  36. Mao Q, Ji F, Wang W, Hu Z, Yuan S (2016) Chlorination of parabens: reaction kinetics and transformation product identification. Environ Sci Pollut Res 23:23081–22391. https://doi.org/10.1007/s11356-016-7499-y

    CAS  Article  Google Scholar 

  37. Margerum DW, Gray ET, Huffman RP (1978) Chlorination and the formation of N-chloro compounds in water treatment. In Organometals and organometalloids, American Chemicals Society. Chapter 17:278–291

    Google Scholar 

  38. Marta-Sanchez AV, Caldas SS, Schneider A, Cardoso SMVS, Primel EG (2018) Trace analysis of parabens preservatives in drinking water treatment sludge, treated and mineral water samples. Environ Sci Pollut Res Int 25:14460–14470. https://doi.org/10.1007/s11356-018-1583-4

    CAS  Article  Google Scholar 

  39. Masten S (2005) Butylparaben [CAS n° 94-26-8] Review of toxicological literature 1-64

  40. Morris JC (1966) The acid ionization constant of HOCl frome 5 to 35°. J Phys Chem 70:3798–3805. https://doi.org/10.1021/j100884a007

    CAS  Article  Google Scholar 

  41. Oishi S (2001) Effects of butylparaben on the male reproductive system in rats. Toxicol Ind Health 17:31–39. https://doi.org/10.1191/0748233701th093oa

    CAS  Article  Google Scholar 

  42. Pattison DI, Davies MJ (2004) Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry (Mosc) 43:4799–4809. https://doi.org/10.1021/bi035946a

    CAS  Article  Google Scholar 

  43. Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 397:158–166. https://doi.org/10.1016/j.scitotenv.2008.02.059

    CAS  Article  Google Scholar 

  44. Pouillot A, Polla AS, Polla BS (2006) Conservateurs en cosmétologie : Mise au point sur les parabènes. Journal de Médecine Esthétique et de Chirurgie Dermatologique 33:187–190

  45. Qiang Z, Adams CD (2004) Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environ Sci Technol 38:1435–1444. https://doi.org/10.1021/es0347484

    CAS  Article  Google Scholar 

  46. Rebenne LM, Gonzalez AC, Olson TM (1996) Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes. Environ Sci Technol 30:2235–2242. https://doi.org/10.1021/es950607t

    CAS  Article  Google Scholar 

  47. Rodier J, Legube B, Merlet N (2009) Analysis of water. Dunod, Paris

    Google Scholar 

  48. Routledge EJ, Parker J, Odum J, Ashby J, Sumpter JP (1998) Some alkyl hydroxyl benzoate preservatives (parabens) are estrogenic. Toxicol Appl Pharmacol 153:12–19. https://doi.org/10.1006/taap.1998.8544

    CAS  Article  Google Scholar 

  49. Sharma VK, Zboril R, McDonald TJ (2014) Formation and toxicity of brominated disinfection byproducts during chlorination of water: a review. J Environ Sci Health B 49:212–228. https://doi.org/10.1080/03601234.2014.858576

    CAS  Article  Google Scholar 

  50. Sivey JD, McCullough CE, Roberts AL (2010) Chlorine monoxide (Cl2O) and molecular chlorine (Cl2) as active chlorinating agents in reaction of dimethenamid with aqueous free chlorine. Environ Sci Technol 44:3357–3362. https://doi.org/10.1021/es9038903

    CAS  Article  Google Scholar 

  51. Soni MG, Carabin IG, Burdock GA (2005) Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol 43:985–1015. https://doi.org/10.1016/j.fct.2005.01.020

    CAS  Article  Google Scholar 

  52. Symons JM, Krasner SW, Simms LA, Sclimenti M (1993) Measurement of THM and precursor concentrations revisited: the effect of bromide ion. J Am Water Works Assoc 85:51–62

    CAS  Article  Google Scholar 

  53. Tammilehto S, Büchi J (1968) Studies on the para-hydroxybenzoic acid ester (Nipagine). 1. Physical-chemical properties. Pharm Acta Helv 43:726–738

    CAS  Google Scholar 

  54. Terasaki M, Makino M (2008) Determination of chlorinated by-products of parabens in swimming pool water. Int J Environ Anal Chem 88:911–922. https://doi.org/10.1080/03067310802272663

    CAS  Article  Google Scholar 

  55. Terasaki M, Takemura Y, Makino M (2012) Paraben chlorinated derivatives in river waters. Environ Chem Lett 10:401–406. https://doi.org/10.1007/s10311-012-0367-1

    CAS  Article  Google Scholar 

  56. Troy RC, Margerum DW (1991) Non-metal redox kinetic hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate. Inorg Chem 30:3538–3543. https://doi.org/10.1021/ic00018a028

    CAS  Article  Google Scholar 

  57. Vikesland PJ, Ozekin K, Valentine RL (2001) Monochloramine decay in model and distribution system waters. Water Res 35:1766–1776. https://doi.org/10.1016/S0043-1354(00)00406-1

    CAS  Article  Google Scholar 

  58. Yoom H, Shin J, Ra J, Son H, Ryu D, Kim C, Lee Y (2018) Transformation of methylparaben during water chlorination: effects of bromide and dissolved organic matter on reaction kinetics and transformation pathways. Sci Total Environ 634:677–686. https://doi.org/10.1016/j.scitotenv.2018.03.330

    CAS  Article  Google Scholar 

  59. Zhai H, Zhang X, Zhu X, Liu J, Ji M (2014) Formation of brominated disinfection byproducts during chloramination of drinking water. Environ Sci Technol 48:2579–2588. https://doi.org/10.1021/es4034765

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the European Community (ERDF) and the French Poitou-Charentes Region for financial support. Moreover, we especially thank Ayan Aden Mousa for her assistance in this study.

Funding

The French Poitou-Charentes Region funded the PHD student’s salary. The European Community (ERDF) and French Poitou-Charentes Region contributed to the financing of some analytical devices used in this work

Author information

Affiliations

Authors

Contributions

PA performed the experiments, interpreted the data, and participated in the writing of this article during her PhD. FD contributed to the analysis and interpretation of the data during the experiments in the presence of ammonia as well as reviewing the manuscript. NKVL and MD supervised PA’s thesis work. They guided the experimental work, contributed to the analysis and interpretation of the results, and participated in writing the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Marie Deborde.

Ethics declarations

Ethical approval

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Santiago V. Luis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdallah, P., Dossier-Berne, F., Karpel Vel Leitner, N. et al. Methylparaben chlorination in the presence of bromide ions and ammonia: kinetic study and modeling. Environ Sci Pollut Res (2021). https://doi.org/10.1007/s11356-020-11503-7

Download citation

Keywords

  • Methylparaben
  • Chlorine
  • Bromide
  • Ammonia
  • Modeling