Joint toxic impacts of cadmium and three pesticides on embryonic development of rare minnow (Gobiocypris rarus)

Abstract

Although rare minnow (Gobiocypris rarus) has been employed in many toxicological investigations, most of them have only assessed the impacts of single chemical. In our current work, we investigated the single and joint toxic impacts of heavy metal cadmium (Cd) and three pesticides (thiamethoxam, bifenthrin, and tebuconazole) on G. rarus embryos. Results from the 96-h semi-static toxicity assay exhibited that bifenthrin possessed the highest intrinsic toxic effect on rare minnows with an LC50 value of 1.86 mg L−1, followed by tebuconazole with LC50 values of 4.07 mg L−1. Contrarily, thiamethoxam elicited the least toxic effect with an LC50 value of 351.9 mg L−1. Seven chemical mixtures (four binary mixtures of Cd-bifenthrin, thiamethoxam-bifenthrin, thiamethoxam-tebuconazole, and bifenthrin-tebuconazole, two ternary mixtures of Cd-thiamethoxam-tebuconazole and thiamethoxam-bifenthrin-tebuconazole, and one quaternary mixture of Cd-thiamethoxam-bifenthrin-tebuconazole) displayed synergistic impacts with equivalent concentration and equitoxic ratio on G. rarus. Our results offered valuable insights into ecological risk assessment of these chemical combinations to aquatic vertebrates. The simultaneous existence of a few chemicals in the aquatic ecosystem might result in elevated toxicity, leading to severe harm to the non-target organisms compared with single compound. The observed synergistic interactions underlined the necessity to revise water quality standards, in which the detrimental joint effects of these chemicals are likely to be underestimated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Altenburger R, Brack W, Burgess RM, Busch W, Escher BI, Focks A, Hewitt LM, Jacobsen BN, de Alda ML, Ait-Aissa S, Backhaus T, Ginebreda A, Hilscherova K, Hollender J, Hollert H, Neale PA, Schulze T, Schymanski EL, Teodorovic I, Tindall AJ, Umbuzeiro GD, Vrana B, Zonja B, Krauss M (2019) Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environ Sci Eur 31:12

    Google Scholar 

  2. Banaee M, Sureda A, Taheri S, Hedayatzadeh F (2019) Sub-lethal effects of dimethoate alone and in combination with cadmium on biochemical parameters in freshwater snail, Galba truncatula. Comp Biochem Physiol C Toxicol Pharmacol 220:62–70

    CAS  Google Scholar 

  3. Barata C, Baird DJ, Nogueira AJ, Soares AM, Riva MC (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78(1):1–14

    CAS  Google Scholar 

  4. Belden JB, Brain RA (2018) Incorporating the joint toxicity of co-applied pesticides into the ecological risk assessment process. Integ environ assess Manag 14(1):79–91

    CAS  Google Scholar 

  5. Bopp SK, Barouki R, Brack W, Dalla Costa S, JCM D, Drakvik PE, Faust M, Karjalainen TK, Kephalopoulos S, van Klaveren J, Kolossa-Gehring M, Kortenkamp A, Lebret E, Lettieri T, Norager S, Ruegg J, Tarazona JV, Trier X, van de Water B, van Gils J, Bergman A (2018) Current EU research activities on combined exposure to multiple chemicals. Environ Int 120:544–562

    CAS  Google Scholar 

  6. Bopp SK, Kienzler A, Richarz AN, van der Linden SC, Paini A, Parissis N, Worth AP (2019) Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Crit Rev Toxicol:1–16

  7. Chen X, Li HZ, You J (2015) Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: the role of bioavailability and enzymatic activities. Environ Pollut 207:138–144

    CAS  Google Scholar 

  8. Chen X, Li H, Zhang J, Ding Y, You J (2016) Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression. Environ Pollut 218:1005–1013

    CAS  Google Scholar 

  9. Chi H (1997) Computer program for the probit analysis. National Chung Hsing University, Taichung

    Google Scholar 

  10. Dang Z, van der Ven LTM, Kienhuis AS (2017) Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test. Chemosphere 186:677–685

    CAS  Google Scholar 

  11. de Zwart D, Adams W, Galay Burgos M, Hollender J, Junghans M, Merrington G, Muir D, Parkerton T, De Schamphelaere KAC, Whale G, Williams R (2018) Aquatic exposures of chemical mixtures in urban environments: approaches to impact assessment. Environ Toxicol Chem 37(3):703–714

    Google Scholar 

  12. Escher BI, Hackermüller J, Polte T, Scholz S, Aigner A, Altenburger R, Böhme A, Bopp SK, Brack W, Busch W, Chadeau-Hyam M, Covaci A, Eisenträger A, Galligan JJ, Garcia-Reyero N, Hartung T, Hein M, Herberth G, Jahnke A, Kleinjans J, Klüver N, Krauss M, Lamoree M, Lehmann I, Luckenbach T, Miller GW, Müller A, Phillips DH, Reemtsma T, Rolle-Kampczyk U, Schüürmann G, Schwikowski B, Tan Y-M, Trump S, Walter-Rohde S, Wambaugh JF (2017) From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ Int 99:97–106

    CAS  Google Scholar 

  13. Evans RM, Martin OV, Faust M, Kortenkamp A (2016) Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals? Sci Total Environ 543:757–764

    CAS  Google Scholar 

  14. Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G, Larssen T (2015) Pesticide levels and environmental risk in aquatic environments in China--a review. Environ Int 81:87–97

    CAS  Google Scholar 

  15. Hernández AF, Gil F, Lacasaña M (2017) Toxicological interactions of pesticide mixtures: an update. Arch Toxicol 91(10):3211–3223

    Google Scholar 

  16. Hladik ML, Main AR, Goulson D (2018) Environmental risks and challenges associated with neonicotinoid insecticides. Environ Sci Technol 52(6):3329–3335

    CAS  Google Scholar 

  17. Hollomon D (2017) Does agricultural use of azole fungicides contribute to resistance in the human pathogen Aspergillus fumigatus? Pest Manag Sci 73(10):1987–1993

    CAS  Google Scholar 

  18. Hua X, Huang X, Tian J, Dong D, Liang D, Guo Z (2019) Migration and distribution of cadmium in aquatic environment: the important role of natural biofilms. Sci Total Environ 670:478–485

    CAS  Google Scholar 

  19. ISO (1996) Water quality-Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)]-Part 3: Flow-through method. ISO 7346-3

  20. Iverson A, Hale C, Richardson L, Miller O, Mcart SH (2019) Synergistic effects of three sterol biosynthesis inhibiting fungicides on the toxicity of a pyrethroid and neonicotinoid insecticide to bumble bees. Apidologie 50:733–744

    CAS  Google Scholar 

  21. Jin SW, Yang FX, Liao T, Hui Y, Wen S, Xu Y (2012) Enhanced effects by mixtures of three estrogenic compounds at environmentally relevant levels on development of Chinese rare minnow (Gobiocypris rarus). Environ Toxicol Pharmacol 33(2):277–283

    CAS  Google Scholar 

  22. Jin M, Ji X, Zhang B, Sheng W, Wang R, Liu K (2019) Synergistic effects of Pb and repeated heat pulse on developmental neurotoxicity in zebrafish. Ecotoxicol Environ Saf 172:460–470

    CAS  Google Scholar 

  23. Jones MM, Duckworth JL, Robertson J (2018) Toxicity of bifenthrin and mixtures of bifenthrin plus acephate, imidacloprid, thiamethoxam, or dicrotophos to adults of tarnished plant bug (Hemiptera: Miridae). J Econ Entomol 111(2):829–835

    CAS  Google Scholar 

  24. Kienzler A, Bopp SK, van der Linden S, Berggren E, Worth A (2016) Regulatory assessment of chemical mixtures: requirements, current approaches and future perspectives. Regul Toxicol Pharmacol 80:321–334

    CAS  Google Scholar 

  25. Kortenkamp A, Faust M (2018) Regulate to reduce chemical mixture risk. Science 361:224–226

    CAS  Google Scholar 

  26. Koutsaftis A, Aoyama I (2007) Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci Total Environ 387(1):166–174

    CAS  Google Scholar 

  27. Krzykwa JC, Saeid A, Jeffries MKS (2019) Identifying sublethal endpoints for evaluating neurotoxic compounds utilizing the fish embryo toxicity test. Ecotoxicol Environ Saf 170:521–529

    CAS  Google Scholar 

  28. Li ZH, Chen L, Wu YH, Li P, Li YF, Ni ZH (2014) Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comp Biochem Physiol C Toxicol Pharmacol 161:53–57

    CAS  Google Scholar 

  29. Li S, Wu Q, Sun Q, Coffin S, Gui W, Zhu G (2019) Parental exposure to tebuconazole causes thyroid endocrine disruption in zebrafish and developmental toxicity in offspring. Aquat Toxicol 211:116–123

    CAS  Google Scholar 

  30. Liang X, Zha J (2016) Toxicogenomic applications of Chinese rare minnow (Gobiocypris rarus) in aquatic toxicology. Comp Biochem Physiol Part D Genomics Proteomics 19:174–180

    CAS  Google Scholar 

  31. Liu L, Xiao YY, Ji YH, Liu MZ, Chen Y, Zeng YL, Zhang YG, Jin L (2017) CuInS2/ZnS QD exposure induces developmental toxicity, oxidative stress and DNA damage in rare minnow (Gobiocypris rarus) embryos and larvae. Comp Biochem Physiol C Toxicol Pharmacol 198:19–27

    CAS  Google Scholar 

  32. Makaras T, Montvydienė D, Kazlauskienė N, Stankevičiūtė M, Raudonytė-Svirbutavičienė E (2020) Juvenile fish responses to sublethal leachate concentrations: comparison of sensitivity of different behavioral endpoints. Environ Sci Pollut Res 27(5):4876–4890

  33. Maloney EM, Morrissey CA, Headley JV, Peru KM, Liber K (2017) Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios. Environ Toxicol Chem 36(11):3091–3101

    CAS  Google Scholar 

  34. Marking LL (1985) Toxicity of chemical mixtures. In: Rand G, Petroceli S (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, Washington DC, pp 164–176

    Google Scholar 

  35. Meek ME, Boobis AR, Crofton KM, Heinemeyer G, Van Raaij M, Vickers C (2011) Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol 60:S1–S14

    CAS  Google Scholar 

  36. OECD (2013) OECD guidelines for the testing of chemicals, fish embryo acute toxicity (FET) test. OECD, Paris No. 236

    Google Scholar 

  37. Ouyang W, Wang Y, Lin C, He M, Hao F, Liu H, Zhu W (2018) Heavy metal loss from agricultural watershed to aquatic system: a scientometrics review. Sci Total Environ 637-638:208–220

    CAS  Google Scholar 

  38. Pan P, Yang JC, Deng SH, Jiang HM, Zhang JF, Li LL, Shen F (2011) Heavy metals and pesticides co-contamination in environment. J Agro-Environ Sci 30(10):1925–1929

    CAS  Google Scholar 

  39. Pérez J, Domingues I, Monteiro M, Soares AMVM, Loureiro S (2013) Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio. Environ Sci Pollut Res 20:4671–4680

    Google Scholar 

  40. Rani M, Shanker U (2018) Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. Environ Sci Pollut Res 25(11):10878–10893

    CAS  Google Scholar 

  41. Rawlings JM, Belanger SE, Connors KA, Carr GJ (2019) Fish embryo tests and acute fish toxicity tests are interchangeable in the application of the threshold approach. Environ Toxicol Chem 38(3):671–681

    CAS  Google Scholar 

  42. Rico A, Arenas-Sánchez A, Pasqualini J, García-Astillero A, Cherta L, Nozal L, Vighi M (2018) Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditions. Aquat Toxicol 204:130–143

    CAS  Google Scholar 

  43. Rizzati V, Briand O, Guillou H, Gamet-Payrastre L (2016) Effects of pesticide mixtures in human and animal models: an update of the recent literature. Chem Biol Interact 254:231–246

    CAS  Google Scholar 

  44. Rotter S, Beronius A, Boobis AR, Hanberg A, van Klaveren J, Luijten M, Machera K, Nikolopoulou D, van der Voet H, Zilliacus J, Solecki R (2018) Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution. Crit Rev Toxicol 48:796–814

    CAS  Google Scholar 

  45. Rufli H (2012) Introduction of moribund category to OECD fish acute test and its effect on suffering and LC50 values. Environ Toxicol Chem 31(5):1107–1112

    CAS  Google Scholar 

  46. Ruiz de Arcaute C, Soloneski S, Larramendy ML (2018) Synergism of mixtures of dicamba and 2,4-dichlorophenoxyacetic acid herbicide formulations on the neotropical fish Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ Pollut 236:33–39

    CAS  Google Scholar 

  47. Santos R, Joyeux A, Besnard A, Blanchard C, Halkett C, Bony S, Sanchez W, Devaux A (2017) An integrative approach to assess ecological risks of surface water contamination for fish populations. Environ Pollut 220(Pt A):588–596

    CAS  Google Scholar 

  48. Sobanska M, Scholz S, Nyman AM, Cesnaitis R, Gutierrez Alonso S, Klüver N, Kühne R, Tyle H, de Knecht J, Dang Z, Lundbergh I, Carlon C, De Coen W (2018) Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of registration, evaluation, authorisation, and restriction of chemicals (REACH). Environ Toxicol Chem 37(3):657–670

    CAS  Google Scholar 

  49. Stevanovic M, Gasic S, Pipal M, Blahova L, Brkic D, Neskovic N, Hilscherova K (2017) Toxicity of clomazone and its formulations to zebrafish embryos (Danio rerio). Aquat Toxicol 188:54–63

    CAS  Google Scholar 

  50. Su LS, Yang GL, Wu SG, Pi TX, Wang Q (2016) The single and joint toxicity of tiazophos and cyhalothrin to earthworm. Asian J Ecotoxicol 11:294–301

    Google Scholar 

  51. Wang YH, Lv L, Yu YJ, Yang GL, Xu ZL, Wang Q, Cai LM (2017) Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio). Chemosphere 170:61–67

    CAS  Google Scholar 

  52. Wei Y, Shi X, Zhang H, Wang J, Zhou B, Dai J (2009) Combined effects of polyfluorinated and perfluorinated compounds on primary cultured hepatocytes from rare minnow (Gobiocypris rarus) using toxicogenomic analysis. Aquat Toxicol 95(1):27–36

    CAS  Google Scholar 

  53. Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res 24(21):17285–17325

    CAS  Google Scholar 

  54. Wu HM, Chen Y, Hu TT, Gu DL, Wang MC, Rao Q, Liu XY (2017) Combined toxicity of pesticide and heavy metal to Daphnia magna. Chinese J Pestic Sci 19(6):716–722

    Google Scholar 

  55. Wu S, Hu G, Zhao X, Wang Q, Jiang J (2018) Synergistic potential of fenvalerate and triadimefon on endocrine disruption and oxidative stress during rare minnow embryo development. Environ Toxicol 33(7):759–769

    CAS  Google Scholar 

  56. Wu L, Yu Q, Zhang G, Wu F, Zhang Y, Yuan C, Zhang T, Wang Z (2019) Single and combined exposures of waterborne Cu and Cd induced oxidative stress responses and tissue injury in female rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 222:90–99

    CAS  Google Scholar 

  57. Yang Y, Ye X, He B, Liu J (2016) Cadmium potentiates toxicity of cypermethrin in zebrafish. Environ Toxicol Chem 35(2):435–445

    CAS  Google Scholar 

  58. Yang Y, Ji D, Huang X, Zhang J, Liu J (2017) Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish. Environ Toxicol Chem 36(8):2139–2146

    CAS  Google Scholar 

  59. Yılmaz AB, Yanar A, Alkan EN (2017) Review of heavy metal accumulation on aquatic environment in Northern East Mediterranean Sea part I: some essential metals. Rev Environ Health 32(1–2):119–163

    Google Scholar 

  60. Zhu B, Wu ZF, Li J, Wang GX (2011) Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus). Ecotoxicol Environ Saf 74(8):2193–2202

    CAS  Google Scholar 

  61. Zhu B, Liu T, Hu X, Wang G (2013) Developmental toxicity of 3,4-dichloroaniline on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 90(3):1132–1139

    CAS  Google Scholar 

  62. Zhu B, Liu L, Gong YX, Ling F, Wang GX (2014a) Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. Environ Sci Pollut Res 21(23):13625–13635

    CAS  Google Scholar 

  63. Zhu B, Liu L, Li DL, Ling F, Wang GX (2014b) Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd. Ecotoxicol Environ Saf 104:269–277

    CAS  Google Scholar 

  64. Zhu L, Li W, Zha J, Li N, Wang Z (2019) Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): docking study, hormone levels, histology, and transcriptional responses. Ecotoxicol Environ Saf 185:109683. https://doi.org/10.1016/j.ecoenv.2019.109683

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of Yanan Zhou and Hongcheng Wang (Zhejiang Academy of Agricultural Sciences).

Funding

The research was supported by the Zhejiang Provincial Natural Science Foundation (Grant No. LY18C030004) and Opening Project Fund of State Key Laboratory for Biology of Plant Diseases and Insect Pests (Grant No. SKLOF201907).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yanhua Wang or Xiaohu Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mao, L., Zhang, Y. et al. Joint toxic impacts of cadmium and three pesticides on embryonic development of rare minnow (Gobiocypris rarus). Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09769-y

Download citation

Keywords

  • Joint toxicity
  • Synergistic effect
  • Aquatic toxicology
  • Rare minnow