A novel spherical fuzzy AHP-integrated spherical WASPAS methodology for petrol station location selection problem: a real case study for İstanbul

Abstract

The petrol station location selection problem is taken into consideration in this study. In order to identify the main and sub-criteria for evaluation, the literature is reviewed and five experts from different companies are interviewed. After that, thirteen different alternative locations are for specified to evaluation. Then, the novel spherical fuzzy AHP-integrated spherical WASPAS methodology is structured in a fuzzy environment, and the petrol station location selection problem is evaluated with this methodology. In this study, a real application is presented for Istanbul to show the applicability of the proposed methodology. Subsequently, a sensitivity analysis is performed to explain and analyze the proposed methodology results. Finally, the results are presented and discussed with future directions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acar C, Beskese A, Temur GT (2019) A novel multicriteria sustainability investigation of energy storage systems. Int J Energy Res 43(12):6419–6441. https://doi.org/10.1002/er.4459

    Article  Google Scholar 

  2. Aragonés-Beltrán P, Pastor-Ferrando JP, García-García F, Pascual-Agulló A (2010) An analytic network process approach for siting a municipal solid waste plant in the metropolitan area of Valencia (Spain). J Environ Manag 91(5):1071–1086. https://doi.org/10.1016/j.jenvman.2009.12.007

    Article  Google Scholar 

  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets (pp. 1–137). Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1870-3_1

  4. Ayyildiz E, Taskin Gumus A, Erkan M (2020) Individual credit ranking by an integrated interval type-2 trapezoidal fuzzy Electre methodology. Soft Comput 91. https://doi.org/10.1007/s00500-020-04929-1

  5. Büyüközkan G, Güleryüz S (2016) A new integrated intuitionistic fuzzy group decision making approach for product development partner selection. Comput Ind Eng 102:383–395. https://doi.org/10.1016/j.cie.2016.05.038

  6. Büyüközkan G, Göçer F (2018) An extension of ARAS methodology under interval valued intuitionistic fuzzy environment for digital supply chain. Applied Soft Computing Journal 69:634–654. https://doi.org/10.1016/j.asoc.2018.04.040

    Article  Google Scholar 

  7. Çavdur F, Sebatlı A, Küçük MK (2019) A group-decision making and goal programming-based solution approach for the student-project team formation problem. J Fac Eng Archit Gazi Univ 34(1):505–521. https://doi.org/10.17341/gazimmfd.416511

    Article  Google Scholar 

  8. Celik E, Taskin Gumus A (2016) An outranking approach based on interval type-2 fuzzy sets to evaluate preparedness and response ability of non-governmental humanitarian relief organizations. Comput Ind Eng 101:21–34. https://doi.org/10.1016/j.cie.2016.08.020

    Article  Google Scholar 

  9. Cevik Onar S, Oztaysi B, Kahraman C (2014) Strategic decision selection using hesitant fuzzy TOPSIS and interval Type-2 fuzzy AHP: a case study. Int J Comput Intell Sys 7(5):1002–1021. https://doi.org/10.1080/18756891.2014.964011

    Article  Google Scholar 

  10. Chabuk A, Al-Ansari N, Hussain HM, Laue J, Hazim A, Knutsson S, Pusch R (2019) Landfill sites selection using MCDM and comparing method of change detection for Babylon governorate, Iraq. Environ Sci Pollut Res 26(35):35325–35339. https://doi.org/10.1007/s11356-019-05064-7

    Article  Google Scholar 

  11. Çolak M, Kaya I, Özkan B, Budak A, Karaşan A (2020) A multi-criteria evaluation model based on hesitant fuzzy sets for blockchain technology in supply chain management. Journal of Intelligent and Fuzzy Systems 38(1):935–946. https://doi.org/10.3233/JIFS-179460

    Article  Google Scholar 

  12. Daskin, M. S., Snyder, L. V., & Berger, R. T. (2005). Facility location in supply chain design. In Logistics systems: design and optimization (pp. 39–65). Springer US. https://doi.org/10.1007/0-387-24977-X_2

  13. Dey PK, Ramcharan EK (2008) Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. J Environ Manag 88(4):1384–1395. https://doi.org/10.1016/j.jenvman.2007.07.011

    Article  Google Scholar 

  14. Eskandari M, Homaee M, Mahmoodi S, Pazira E, Van Genuchten MT (2015) Optimizing landfill site selection by using land classification maps. Environ Sci Pollut Res 22(10):7754–7765. https://doi.org/10.1007/s11356-015-4182-7

    CAS  Article  Google Scholar 

  15. Eskandari M, Homaee M, Falamaki A (2016) Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility. Environ Sci Pollut Res 23(12):12423–12434. https://doi.org/10.1007/s11356-016-6459-x

    Article  Google Scholar 

  16. Galankashi MR, Fallahiarezoudar E, Moazzami A, Helmi SA, Rohani JM, Yusof NM (2018) An efficient integrated simulation–Taguchi approach for sales rate evaluation of a petrol station. Neural Comput & Applic 29(4):1073–1085. https://doi.org/10.1007/s00521-016-2491-5

    Article  Google Scholar 

  17. Gul M (2018) Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and colouring unit. International Journal of Occupational Safety and Ergonomics:1–14. https://doi.org/10.1080/10803548.2018.1492251

  18. Gul M, Celik E, Gumus AT, Guneri AF (2016) Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European Journal of Industrial Engineering 10(2):196–223. https://doi.org/10.1504/EJIE.2016.075846

    Article  Google Scholar 

  19. Gumus AT (2009) Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert Systems with Applications 36(2 PART 2):4067–4074. https://doi.org/10.1016/j.eswa.2008.03.013

    Article  Google Scholar 

  20. Gündoǧdu FK, Kahraman C (2019) Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent and Fuzzy Systems 36(1):337–352. https://doi.org/10.3233/JIFS-181401

    Article  Google Scholar 

  21. Gwak JH, Lee BK, Lee WK, Sohn SY (2017) Optimal location selection for the installation of urban green roofs considering honeybee habitats along with socio-economic and environmental effects. J Environ Manag 189:125–133. https://doi.org/10.1016/j.jenvman.2016.12.022

    Article  Google Scholar 

  22. Junaid M, Xue Y, Syed MW, Li JZ, Ziaullah M (2020) A neutrosophic ahp and topsis framework for supply chain risk assessment in automotive industry of Pakistan. Sustainability (Switzerland) 12(1):154. https://doi.org/10.3390/SU12010154

    Article  Google Scholar 

  23. Kahraman, C., Otay, İ., Öztayşi, B., & Onar, S. Ç. (2019). An integrated AHP & DEA methodology with neutrosophic sets. In Studies in fuzziness and soft computing (Vol. 369, pp. 623–645). Springer Verlag. https://doi.org/10.1007/978-3-030-00045-5_24

  24. Khahro SH, Memon ZA (2017) Cite this article: Shabir Hussain Khahro and Zubair Ahmed Memon, Gis based land suitability analysis for petrol stations. Int J Civil Eng Technol 8(10) http://www.iaeme.com/IJCIET/index.asp1, http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=8&IType=10

  25. Klose A, Drexl A (2005) Facility location models for distribution system design. Eur J Oper Res 162(1):4–29. https://doi.org/10.1016/j.ejor.2003.10.031

    Article  Google Scholar 

  26. Koc A, Turk S, Şahin G (2019) Multi-criteria of wind-solar site selection problem using a GIS-AHP-based approach with an application in Igdir Province/Turkey. Environ Sci Pollut Res 26(31):32298–32310. https://doi.org/10.1007/s11356-019-06260-1

    CAS  Article  Google Scholar 

  27. Kutlu AC, Ekmekçioǧlu M (2012) Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst Appl 39(1):61–67. https://doi.org/10.1016/j.eswa.2011.06.044

    Article  Google Scholar 

  28. Kutlu Gündoğdu F, Kahraman C (2020) A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Comput 24(6):4607–4621. https://doi.org/10.1007/s00500-019-04222-w

    Article  Google Scholar 

  29. Lim S, Kuby M (2010) Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model. Eur J Oper Res 204(1):51–61. https://doi.org/10.1016/j.ejor.2009.09.032

    Article  Google Scholar 

  30. Liu P, Zhang X (2018) Approach to multi-attributes decision making with intuitionistic linguistic information based on Dempster-Shafer evidence theory. IEEE Access 6:52969–52981. https://doi.org/10.1109/ACCESS.2018.2869844

    Article  Google Scholar 

  31. Man Y, Han Y, Liu Y, Lin R, Ren J (2020) Multi-criteria decision making for sustainability assessment of boxboard production: a life cycle perspective considering water consumption, energy consumption, GHG emissions, and internal costs. J Environ Manag 255:109860. https://doi.org/10.1016/j.jenvman.2019.109860

    Article  Google Scholar 

  32. MirHassani SA, Ebrazi R (2013) A flexible reformulation of the refueling station location problem. Transp Sci 47(4):617–628. https://doi.org/10.1287/trsc.1120.0430

    Article  Google Scholar 

  33. Montoya A, Guéret C, Mendoza JE, Villegas JG (2016) A multi-space sampling heuristic for the green vehicle routing problem. Transportation Research Part C: Emerging Technologies 70:113–128. https://doi.org/10.1016/j.trc.2015.09.009

    Article  Google Scholar 

  34. Nabeeh NA, Smarandache F, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A (2019) An integrated Neutrosophic-TOPSIS approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7:29734–29744. https://doi.org/10.1109/ACCESS.2019.2899841

    Article  Google Scholar 

  35. Otay İ, Oztaysi B, Cevik Onar S, Kahraman C (2017) Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Syst 133:90–106. https://doi.org/10.1016/j.knosys.2017.06.028

  36. Ozcelik G, Aydogan EK, Gencer C (2014) A hybrid Moora-fuzzy algorithm for special education and rehabilitation center selection. J Manag Inf Sci 2(3):53

    Article  Google Scholar 

  37. Panchal D, Chatterjee P, Shukla RK, Choudhury T, Tamosaitiene J (2017) Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic Computation and Economic Cybernetics Studies and Research 51(3):179–196

    Google Scholar 

  38. Razieh K, Ahmad M (2015) An IF-DEMATEL-AHP based on triangular intuitionistic fuzzy numbers (TIFNs). Decision Science Letters 4(2):237–246. https://doi.org/10.5267/j.dsl.2014.11.002

    Article  Google Scholar 

  39. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  40. Samanlioglu F, Ayaǧ Z (2020) An intelligent approach for the evaluation of innovation projects. Journal of Intelligent and Fuzzy Systems 38(1):905–915. https://doi.org/10.3233/JIFS-179458

    Article  Google Scholar 

  41. Sarucan A, Söğüt A (2020) An integrated hesitant fuzzy approach to a job evaluation and application in a food company. Advances in Intelligent Systems and Computing 1029:1050–1058. https://doi.org/10.1007/978-3-030-23756-1_124

    Article  Google Scholar 

  42. Smarandache, F. (1999). A unifying field in logics: Neutrosophic logic

  43. Solangi YA, Shah SAA, Zameer H, Ikram M, Saracoglu BO (2019) Assessing the solar PV power project site selection in Pakistan: based on AHP-fuzzy VIKOR approach. Environ Sci Pollut Res 26(29):30286–30302. https://doi.org/10.1007/s11356-019-06172-0

    Article  Google Scholar 

  44. Song P, Li L, Huang D, Wei Q, Chen X (2020) Loan risk assessment based on Pythagorean fuzzy analytic hierarchy process. J Phys Conf Ser 1437:012101. https://doi.org/10.1088/1742-6596/1437/1/012101

    Article  Google Scholar 

  45. Soroudi M, Omrani G, Moataar F, Jozi SA (2018) A comprehensive multi-criteria decision making-based land capability assessment for municipal solid waste landfill sitting. Environ Sci Pollut Res 25(28):27877–27889. https://doi.org/10.1007/s11356-018-2765-9

    Article  Google Scholar 

  46. Torra, V. (2010). Hesitant fuzzy sets. Int J Intell Syst, 25(6), n/a-n/a. https://doi.org/10.1002/int.20418

  47. Turskis Z, Zavadskas EK, Antucheviciene J, Kosareva N (2015) A hybrid model based on fuzzy AHP and fuzzy WASPAS for construction site selection. International Journal of Computers, Communications and Control 10(6):873–888. https://doi.org/10.15837/ijccc.2015.6.2078

    Article  Google Scholar 

  48. Tuzkaya G, Önüt S, Tuzkaya UR, Gülsün B (2008) An analytic network process approach for locating undesirable facilities: an example from Istanbul, Turkey. J Environ Manag 88(4):970–983. https://doi.org/10.1016/j.jenvman.2007.05.004

    Article  Google Scholar 

  49. Upchurch C, Kuby M, Lim S (2009) A model for location of capacitated alternative-fuel stations. Geogr Anal 41(1):85–106. https://doi.org/10.1111/j.1538-4632.2009.00744.x

    Article  Google Scholar 

  50. Vahidnia MH, Alesheikh AA, Alimohammadi A (2009) Hospital site selection using fuzzy AHP and its derivatives. J Environ Manag 90(10):3048–3056. https://doi.org/10.1016/j.jenvman.2009.04.010

    Article  Google Scholar 

  51. Wang YW, Wang CR (2010) Locating passenger vehicle refueling stations. Transportation Research Part E: Logistics and Transportation Review 46(5):791–801. https://doi.org/10.1016/j.tre.2009.12.001

    CAS  Article  Google Scholar 

  52. Wang JQ, Peng JJ, Zhang HY, Liu T, Chen XH (2015) An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis Negot 24(1):171–192. https://doi.org/10.1007/s10726-014-9385-7

    Article  Google Scholar 

  53. Wu Y, Liu L, Gao J, Chu H, Xu C (2017) An extended VIKOR-based approach for pumped hydro energy storage plant site selection with heterogeneous information. Information 8(3):106. https://doi.org/10.3390/info8030106

    Article  Google Scholar 

  54. Yager, R. R. (2013). Pythagorean fuzzy subsets. Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

  55. Yerlikaya MA, Arikan F (2016) KOBI’lere saglanan desteklerin performans etkinlik siralarinin Promethee ve Oreste yöntemleri ile belirlenmesi enmesi. J Fac Eng Archit Gazi Univ 31(4):1007–1016. https://doi.org/10.17341/gazimmfd.278456

    Article  Google Scholar 

  56. Yildiz A, Ayyildiz E, Gumus AT, Ozkan C (2020a) A modified balanced scorecard based hybrid Pythagorean fuzzy AHP-Topsis methodology for ATM site selection problem. Int J Inf Technol Decis Mak 19:365–384. https://doi.org/10.1142/S0219622020500017

    Article  Google Scholar 

  57. Yildiz D, Temur GT, Beskese A, Bozbura FT (2020b) Evaluation of positive employee experience using hesitant fuzzy analytic hierarchy process. J Intell Fuzzy Syst 38(1):1043–1058. https://doi.org/10.3233/JIFS-179467

    Article  Google Scholar 

  58. Yilmaz MK, Kusakci AO, Tatoglu E, Icten O, Yetgin F (2019) Performance evaluation of real estate investment trusts using a hybridized interval type-2 fuzzy AHP-DEA approach: the case of Borsa Istanbul. Int J Inf Technol Decis Mak 18(6):1785–1820. https://doi.org/10.1142/S0219622019500354

    Article  Google Scholar 

  59. Yucesan M, Gul M (2020) Hospital service quality evaluation: an integrated model based on Pythagorean fuzzy AHP and fuzzy TOPSIS. Soft Comput 24(5):3237–3255. https://doi.org/10.1007/s00500-019-04084-2

    Article  Google Scholar 

  60. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  61. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-II. Inf Sci 8(4):301–357. https://doi.org/10.1016/0020-0255(75)90046-8

    Article  Google Scholar 

  62. Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevicius A (2012) Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika 122(6):3–6. https://doi.org/10.5755/j01.eee.122.6.1810

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Ayyildiz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Marcus Schulz

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayyildiz, E., Taskin Gumus, A. A novel spherical fuzzy AHP-integrated spherical WASPAS methodology for petrol station location selection problem: a real case study for İstanbul. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09640-0

Download citation

Keywords

  • Location selection
  • Petrol station
  • Spherical fuzzy
  • AHP
  • WASPAS