Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review

Abstract

Water pollution and depletion of natural resources have motivated the utilization of green organic solvents in solvent extraction (SX) and liquid membrane (LM) for sustainable wastewater treatment and resource recovery. SX is an old and established separation method, while LM, which combines both the solute removal and recovery processes of SX in a single unit, is a revolutionary separation technology. The organic solvents used for solute removal in SX and LM can be categorized into sole conventional, mixed conventional-green, and sole green organic solvents, whereas the stripping agents used for solute recovery include acids, bases, metal salts, and water. This review revealed that the performance of greener organic solvents (mixed conventional-green and sole green organic solvents) was on par with the sole conventional organic solvents. However, some green organic solvents may threaten food security, while others could be pricey. The distinctive extraction theories of various sole green organic solvents (free fatty acid-rich oils, triglyceride-rich oils, and deep eutectic solvents) affect their application suitability for a specific type of wastewater. Organic liquid wastes are among the optimal green organic solvents for SX and LM in consideration of their triple environmental, economic, and performance benefits.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akhtar MK, Dandapani H, Thiel K, Jones PR (2015) Microbial production of 1-octanol: a naturally excreted biofuel with diesel-like properties. Metab Eng Commun 2:1–5. https://doi.org/10.1016/J.METENO.2014.11.001

    Article  Google Scholar 

  2. Alder CM, Hayler JD, Henderson RK, Redman AM, Shukla L, Shuster LE, Sneddon HF (2016) Updating and further expanding GSK’s solvent sustainability guide. Green Chem 18:3879–3890. https://doi.org/10.1039/C6GC00611F

    CAS  Article  Google Scholar 

  3. Al-Hamimi S, Mayoral AA, Cunico LP, Turner C (2016) Carbon dioxide expanded ethanol extraction: solubility and extraction kinetics of α-pinene and cis-verbenol. Anal Chem 88:4336–4345. https://doi.org/10.1021/acs.analchem.5b04534

    CAS  Article  Google Scholar 

  4. Alhassan Y, Kumar N, Bugaje IM (2016) Catalytic upgrading of waste tire pyrolysis oil via supercritical esterification with deep eutectic solvents (green solvents and catalysts). J Energy Inst 89:683–693. https://doi.org/10.1016/J.JOEI.2015.05.003

    CAS  Article  Google Scholar 

  5. Alibaba (2019a) Chemicals: 1-octanol. In: Alibaba.com. https://www.alibaba.com/showroom/price-octanol.html. Accessed 23 Dec 2019

  6. Alibaba (2019b) Chemicals: Span 80. In: Alibaba.com. https://www.alibaba.com/showroom/span-80.html. Accessed 23 Dec 2019

  7. Azmi Z (2016) Malaysians use too much cooking oil. In: Mole. http://mole.my/malaysians-use-too-much-cooking-oil/. Accessed 23 Dec 2019

  8. Bazina N, He J (2018) Analysis of fatty acid profiles of free fatty acids generated in deep-frying process. J Food Sci Technol 55:3085–3092. https://doi.org/10.1007/s13197-018-3232-9

    CAS  Article  Google Scholar 

  9. Bettelheim FA, Brown WH, Campbell MK, Farrell SO (2010) Introduction to organic and biochemistry, 7th edn. Brooks Cole Cengage Learning, California

    Google Scholar 

  10. Bhatluri KK, Manna MS, Ghoshal AK, Saha P (2017) Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition. Electrochim Acta 229:1–7. https://doi.org/10.1016/j.electacta.2017.01.090

    CAS  Article  Google Scholar 

  11. Bouchon P (2009) Understanding oil absorption during deep-fat frying. In: Taylor SL (ed) Advances in food and nutrition research. Elsevier, Massachusetts, pp 209–234

    Google Scholar 

  12. Bubalo MC, Vidović S, Redovniković IR, Jokić S (2015) Green solvents for green technologies. J Chem Technol Biotechnol 90:1631–1639. https://doi.org/10.1002/jctb.4668

    CAS  Article  Google Scholar 

  13. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/J.ECOENV.2017.11.034

    CAS  Article  Google Scholar 

  14. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy R, Sherwood J (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:1–24. https://doi.org/10.1186/s40508-016-0051-z

    CAS  Article  Google Scholar 

  15. Bystrzanowska M, Pena-Pereira F, Marcinkowski Ł, Tobiszewski M (2019) How green are ionic liquids?–A multicriteria decision analysis approach. Ecotoxicol Environ Saf 174:455–458. https://doi.org/10.1016/J.ECOENV.2019.03.014

    CAS  Article  Google Scholar 

  16. Castro-Puyana M, Marina ML, Plaza M (2017) Water as green extraction solvent: principles and reasons for its use. Curr Opin Green Sustain Chem 5:31–36. https://doi.org/10.1016/J.COGSC.2017.03.009

    Article  Google Scholar 

  17. Chang SH (2014) Vegetable oil as organic solvent for wastewater treatment in liquid membrane processes. Desalin Water Treat 52:88–101. https://doi.org/10.1080/19443994.2013.782829

    CAS  Article  Google Scholar 

  18. Chang SH (2016) Types of bulk liquid membrane and its membrane resistance in heavy metal removal and recovery from wastewater. Desalin Water Treat 57:19785–19793

    Article  Google Scholar 

  19. Chang SH (2017) Parametric studies on an innovative waste vegetable oil-based continuous liquid membrane (WVCLM) for Cu(II) ion separation from aqueous solutions. J Ind Eng Chem 50:102–110. https://doi.org/10.1016/j.jiec.2017.01.037

    CAS  Article  Google Scholar 

  20. Chang SH (2018a) A comparative study of batch and continuous bulk liquid membranes in the removal and recovery of Cu(II) ions from wastewater. Water Air Soil Pollut 229:1–11

    Article  Google Scholar 

  21. Chang SH (2018b) Bio-oil derived from palm empty fruit bunches: fast pyrolysis, liquefaction and future prospects. Biomass Bioenergy 119:263–276. https://doi.org/10.1016/J.BIOMBIOE.2018.09.033

    CAS  Article  Google Scholar 

  22. Chang SH, Teng TT, Ismail N (2010) Extraction of Cu(II) from aqueous solutions by vegetable oil-based organic solvents. J Hazard Mater 181:868–872. https://doi.org/10.1016/j.jhazmat.2010.05.093

    CAS  Article  Google Scholar 

  23. Chang SH, Teng TT, Ismail N (2011a) Efficiency, stoichiometry and structural studies of Cu(II) removal from aqueous solutions using di-2-ethylhexylphosphoric acid and tributylphosphate diluted in soybean oil. Chem Eng J 166:249–255. https://doi.org/10.1016/j.cej.2010.10.069

    CAS  Article  Google Scholar 

  24. Chang SH, Teng TT, Ismail N, Alkarkhi AFM (2011b) Selection of design parameters and optimization of operating parameters of soybean oil-based bulk liquid membrane for Cu(II) removal and recovery from aqueous solutions. J Hazard Mater 190:197–204. https://doi.org/10.1016/j.jhazmat.2011.03.025

    CAS  Article  Google Scholar 

  25. Chaouchi S, Hamdaoui O (2015) Extraction of endocrine disrupting compound propylparaben from water by emulsion liquid membrane using trioctylphosphine oxide as carrier. J Ind Eng Chem 22:296–305. https://doi.org/10.1016/J.JIEC.2014.07.023

    CAS  Article  Google Scholar 

  26. Cheremisinoff NP (2003) Industrial solvents handbook, revised and expanded, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  27. Choi YH, Verpoorte R (2019) Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr Opin Food Sci 26:87–93. https://doi.org/10.1016/j.cofs.2019.04.003

    Article  Google Scholar 

  28. Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800. https://doi.org/10.1021/acs.chemrev.7b00571

    CAS  Article  Google Scholar 

  29. Correia PFMM, Ferreira LM, Reis MTA, de Carvalho JMR (2007) A study on the selective recovery of phenol and formaldehyde from phenolic resin plant effluents by liquid-liquid extraction. Solvent Extr Ion Exch 25:485–501

    CAS  Article  Google Scholar 

  30. Cui Y, Li C, Yin J, Li S, Jia Y, Bao M (2017) Design, synthesis and properties of acidic deep eutectic solvents based on choline chloride. J Mol Liq 236:338–343. https://doi.org/10.1016/J.MOLLIQ.2017.04.052

    CAS  Article  Google Scholar 

  31. Cusack RW (1996) Solve wastewater problems with liquid-liquid extraction. Chem Eng Prog 92:56–63

    CAS  Google Scholar 

  32. DeBolt SE, Kollman PA (1995) Investigation of structure, dynamics, and solvation in 1-octanol and its water-saturated solution: molecular dynamics and free-energy perturbation studies. J Am Chem Soc 117:5316–5340. https://doi.org/10.1021/ja00124a015

    CAS  Article  Google Scholar 

  33. Di X, Zhang Y, Fu J, Yu Q, Wang Z, Yuan Z (2019) Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochem 81:33–38. https://doi.org/10.1016/j.procbio.2019.03.024

    CAS  Article  Google Scholar 

  34. Didi MA, Villemin D, Abderrahim O, Azzouz A (2014) Liquid–liquid extraction of thorium(IV) by fatty acids: a comparative study. J Radioanal Nucl Chem 299:1191–1198. https://doi.org/10.1007/s10967-013-2855-6

    CAS  Article  Google Scholar 

  35. Ding N, Peng C, Ren Y, Liu Y, Wang P, Dong L, Liu H, Wang D (2018) Improving the dewaterability of citric acid wastewater sludge by Fenton treatment. J Clean Prod 196:739–746. https://doi.org/10.1016/J.JCLEPRO.2018.06.139

    CAS  Article  Google Scholar 

  36. Duan H, Wang Z, Yuan X, Wang S, Guo H, Yang X (2017) A novel sandwich supported liquid membrane system for simultaneous separation of copper, nickel and cobalt in ammoniacal solution. Sep Purif Technol 173:323–329. https://doi.org/10.1016/J.SEPPUR.2016.09.045

    CAS  Article  Google Scholar 

  37. Ehtash M, Fournier-Salaün M-C, Dimitrov K, Salaün P, Saboni A (2014) Phenol removal from aqueous media by pertraction using vegetable oil as a liquid membrane. Chem Eng J 250:42–47. https://doi.org/10.1016/J.CEJ.2014.03.068

    CAS  Article  Google Scholar 

  38. El Achkar T, Fourmentin S, Greige-Gerges H (2019) Deep eutectic solvents: an overview on their interactions with water and biochemical compounds. J Mol Liq 288:111028. https://doi.org/10.1016/J.MOLLIQ.2019.111028

    Article  Google Scholar 

  39. Elahi SH, Abdi H, Shahverdi HR (2013) Investigating viscosity variations of molten aluminum by calcium addition and stirring. Mater Lett 91:376–378. https://doi.org/10.1016/J.MATLET.2012.09.109

    CAS  Article  Google Scholar 

  40. El-Araby R, Amin A, El Morsi AK, El-Ibiari NN, El-Diwani GI (2018) Study on the characteristics of palm oil–biodiesel–diesel fuel blend. Egypt J Pet 27:187–194. https://doi.org/10.1016/J.EJPE.2017.03.002

    Article  Google Scholar 

  41. Eljaddi T, Lebrun L, Hlaibi M (2017) Review on mechanism of facilitated transport on liquid membranes. J Membr Sci Res 3:199–208. https://doi.org/10.22079/JMSR.2017.50137.1110

    Article  Google Scholar 

  42. Esteban B, Riba J-R, Baquero G, Baquero G, Rius A, Puig R (2012) Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 42:164–171. https://doi.org/10.1016/J.BIOMBIOE.2012.03.007

    CAS  Article  Google Scholar 

  43. Gai H, Zhong C, Qiao L, Chen S, Xiao M, Song H (2018) Extraction of 1-amino-2-naphthol-4-sulfonic acid from wastewater using trioctylamine (N, N-dioctyloctan-1-amine) in methyl isobutyl ketone. J Clean Prod 201:774–782. https://doi.org/10.1016/J.JCLEPRO.2018.08.082

    CAS  Article  Google Scholar 

  44. Goh PS, Ismail AF (2018) A review on inorganic membranes for desalination and wastewater treatment. Desalination 434:60–80. https://doi.org/10.1016/J.DESAL.2017.07.023

    CAS  Article  Google Scholar 

  45. Gu Y, Jérôme F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550–9570. https://doi.org/10.1039/c3cs60241a

    CAS  Article  Google Scholar 

  46. Guerdouh A, Barkat D (2015) Solvent effects on the extraction of copper(II) with lauric acid. J J Thermodyn Catal 6:1–7. https://doi.org/10.4172/2157-7544.1000148

    CAS  Article  Google Scholar 

  47. Guerdouh A, Barkat D (2018) Experimental study of the extraction of chromium(III) from nitrate medium by lauric acid. Mellurgical Mater Eng 24:189–197. https://doi.org/10.30544/385

    Article  Google Scholar 

  48. Guo C, Tan Y, Yang S, Qian Y (2018) Development of phenols recovery process with novel solvent methyl propyl ketone for extracting dihydric phenols from coal gasification wastewater. J Clean Prod 198:1632–1640. https://doi.org/10.1016/J.JCLEPRO.2018.07.161

    CAS  Article  Google Scholar 

  49. Habashi F (2018) Metallothermic reactions-past, present and future. Res Reports Met 2:1–16

    Google Scholar 

  50. Halim SFA, Chang SH, Morad N (2019a) Parametric studies of Cu(II) ion extraction into palm kernel fatty acid distillate as a green organic solvent. J Environ Chem Eng 7:103488. https://doi.org/10.1016/j.jece.2019.103488

    CAS  Article  Google Scholar 

  51. Halim SFA, Chang SH, Morad N (2019b) Extraction of copper ions from aqueous solutions with oleic acid as green solvent. J Phys Conf Ser 1349:1–7. https://doi.org/10.1088/1742-6596/1349/1/012128

    Article  Google Scholar 

  52. Halim SFA, Chang SH, Morad N (2020) Extraction of Cu(II) ions from aqueous solutions by free fatty acid-rich oils as green extractants. J Water Process Eng 33:100997. https://doi.org/10.1016/j.jwpe.2019.100997

    Article  Google Scholar 

  53. Hammond EW (2003) Vegetable oils: composition and analysis. Encycl Food Sci Nutr:5916–5921. https://doi.org/10.1016/B0-12-227055-X/01227-X

  54. Han A, Zhang H, Sun J, Chuah G-K, Jaenicke S (2017) Investigation into bulk liquid membranes for removal of chromium(VI) from simulated wastewater. J Water Process Eng 17:63–69. https://doi.org/10.1016/J.JWPE.2017.01.011

    Article  Google Scholar 

  55. Hannula P-M, Khalid MK, Janas D, Yliniemi K, Lundström M (2019) Energy efficient copper electrowinning and direct deposition on carbon nanotube film from industrial wastewaters. J Clean Prod 207:1033–1039. https://doi.org/10.1016/J.JCLEPRO.2018.10.097

    CAS  Article  Google Scholar 

  56. Harini M, Jain S, Adhikari J, Noronha SB, Yamuna Rani K (2015) Design of an ionic liquid as a solvent for the extraction of a pharmaceutical intermediate. Sep Purif Technol 155:45–57. https://doi.org/10.1016/J.SEPPUR.2015.07.040

    CAS  Article  Google Scholar 

  57. Hidayah NN, Abidin SZ (2018) The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: a review. Miner Eng 121:146–157. https://doi.org/10.1016/J.MINENG.2018.03.018

    CAS  Article  Google Scholar 

  58. Hilder MH (1968) The solubility water in edible oils and fats. J Am Oil Chem Soc 45:703–707

    CAS  Article  Google Scholar 

  59. Hossain L, Sarker SK, Khan MS (2018) Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh. Environ Dev 26:23–33. https://doi.org/10.1016/J.ENVDEV.2018.03.005

    Article  Google Scholar 

  60. Jafari M, Keshavarz MH, Salek H (2019) A simple method for assessing chemical toxicity of ionic liquids on Vibrio fischeri through the structure of cations with specific anions. Ecotoxicol Environ Saf 182:109429. https://doi.org/10.1016/J.ECOENV.2019.109429

    CAS  Article  Google Scholar 

  61. Jin Y, Ma Y, Weng Y, Jia X, Li J (2014) Solvent extraction of Fe3+ from the hydrochloric acid route phosphoric acid by D2EHPA in kerosene. J Ind Eng Chem 20:3446–3452. https://doi.org/10.1016/j.jiec.2013.12.033

    CAS  Article  Google Scholar 

  62. Johnson S (2008) The ghost map: a street, an epidemic and the hidden power of urban networks. Penguin Books

  63. Jumaah MA, Yusoff MFM, Salimon J, Bahadi M (2019) Physical characteristics of palm fatty acid distillate. J Chem Pharm Sci 12:1–5. https://doi.org/10.30558/jchps.20191201001

    Article  Google Scholar 

  64. Jusoh N, Rosly MB, Othman N, Rahman HA, Noah NFM, Sulaiman RNR (2020) Selective extraction and recovery of polyphenols from palm oil mill sterilization condensate using emulsion liquid membrane process. Environ Sci Pollut Res:1–12. https://doi.org/10.1007/s11356-020-07972-5

  65. Kaur P, Rajani N, Kumawat P, Singh N, Kushwaha JP (2018) Performance and mechanism of dye extraction from aqueous solution using synthesized deep eutectic solvents. Colloids Surfaces A Physicochem Eng Asp 539:85–91. https://doi.org/10.1016/J.COLSURFA.2017.12.013

    CAS  Article  Google Scholar 

  66. Kaushik A, Basu S, Raturi S, Batra VS, Balakrishnan M (2018) Recovery of antioxidants from sugarcane molasses distillery wastewater and its effect on biomethanation. J Water Process Eng 25:205–211. https://doi.org/10.1016/J.JWPE.2018.08.003

    Article  Google Scholar 

  67. Kech C, Galloy A, Frippiat C, Piel A, Garot D (2018) Optimization of direct liquid-liquid extraction of lipids from wet urban sewage sludge for biodiesel production. Fuel 212:132–139. https://doi.org/10.1016/J.FUEL.2017.10.010

    CAS  Article  Google Scholar 

  68. Khezeli T, Daneshfar A, Sahraei R (2015) Emulsification liquid–liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1425:25–33. https://doi.org/10.1016/J.CHROMA.2015.11.007

    CAS  Article  Google Scholar 

  69. Kimura ET, Ebert DM, Dodge PW (1971) Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19:699–704. https://doi.org/10.1016/0041-008X(71)90301-2

    CAS  Article  Google Scholar 

  70. King CJ (2013) Separation processes, 2nd edn. Dover Publications, Mineola

    Google Scholar 

  71. Kislik VS (2016) Liquid membrane separation. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, Heidelberg, pp 1105–1107

    Google Scholar 

  72. Krstić V, Urošević T, Pešovski B (2018) A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci 192:273–287. https://doi.org/10.1016/J.CES.2018.07.022

    Article  Google Scholar 

  73. Kuipa PK, Hughes MA (2002) Diluent effect on the solvent extraction rate of copper. Sep Sci Technol 37:1135–1152. https://doi.org/10.1081/SS-120002246

    CAS  Article  Google Scholar 

  74. Kul M, Oskay KO (2015) Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy 155:153–160. https://doi.org/10.1016/J.HYDROMET.2015.04.021

    CAS  Article  Google Scholar 

  75. Kumar A, Pal D (2018) Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. J Environ Chem Eng 6:52–58. https://doi.org/10.1016/J.JECE.2017.11.059

    Article  Google Scholar 

  76. Kumar A, Sharma A, Upadhyaya KC (2016) Vegetable oil: nutritional and industrial perspective. Curr Genomics 17:230–240. https://doi.org/10.2174/1389202917666160202220107

    CAS  Article  Google Scholar 

  77. Kumar A, Thakur A, Panesar PS (2019) A comparative study on experimental and response surface optimization of lactic acid synergistic extraction using green emulsion liquid membrane. Sep Purif Technol 211:54–62. https://doi.org/10.1016/J.SEPPUR.2018.09.048

    CAS  Article  Google Scholar 

  78. Lee SC (2015) Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants. Bioresour Technol 192:340–345. https://doi.org/10.1016/J.BIORTECH.2015.05.089

    CAS  Article  Google Scholar 

  79. Levchuk I, Rueda Márquez JJ, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange–a review. Chemosphere 192:90–104. https://doi.org/10.1016/J.CHEMOSPHERE.2017.10.101

    CAS  Article  Google Scholar 

  80. Li NN (1968) Separating hydrocarbons with liquid membranes United States Patent 3410794

  81. Li L, Zhong H, Cao Z, Yuan L (2011) Recovery of copper(II) and nickel(II) from plating wastewater by solvent extraction. Chin J Chem Eng 19:926–930. https://doi.org/10.1016/S1004-9541(11)60073-6

    CAS  Article  Google Scholar 

  82. Li G, Xue J, Liu N, Yu L (2016) Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier. Water Sci Technol 73:2888–2895. https://doi.org/10.2166/wst.2016.136

    CAS  Article  Google Scholar 

  83. Lin S, Mackey HR, Hao T, Guo G, van Loosdrecht MCM, Chen G (2018) Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities. Water Res 143:399–415. https://doi.org/10.1016/J.WATRES.2018.06.051

    CAS  Article  Google Scholar 

  84. Liu W, He L, Wang M, Wei L, Xu L, Zhou Z, Ren Z (2018) Effective removal of ammonia from wastewater using hollow fiber renewal liquid membrane. Asia-Pacific J Chem Eng 13:1–10. https://doi.org/10.1002/apj.2245

    CAS  Article  Google Scholar 

  85. Lu S, Pei L (2016) A study on phenol migration by coupling the liquid membrane in the ionic liquid. Int J Hydrog Energy 41:15724–15732. https://doi.org/10.1016/J.IJHYDENE.2016.05.008

    CAS  Article  Google Scholar 

  86. Machineni L (2019) Review on biological wastewater treatment and resources recovery: attached and suspended growth systems. Water Sci Technol 80:2013–2026. https://doi.org/10.2166/wst.2020.034

    Article  Google Scholar 

  87. Malvade AV, Satpute ST (2013) Production of palm fatty acid distillate biodiesel and effects of its blends on performance of single cylinder diesel engine. Procedia Eng 64:1485–1494. https://doi.org/10.1016/J.PROENG.2013.09.230

    CAS  Article  Google Scholar 

  88. Marcus Y (2004) Principles of solubility and solutions. In: Rydberg J, Cox M, Musikas C, Choppin GR (eds) Solvent extraction principles and practice. Marcel Dekker, New York, pp 27–80

    Google Scholar 

  89. Mehta HS, Parikh VB, Pal U, Menon SK (2006) Liquid membrane transportation of fluoride ions with alizarin based azacrown ether Zr-complex. J Fluor Chem 127:1228–1234. https://doi.org/10.1016/J.JFLUCHEM.2006.07.005

    CAS  Article  Google Scholar 

  90. Memon FN, Memon S, Minhas FT (2015) Calix[4]arene-mediated uphill transport of methyl red through bulk liquid membrane: kinetics of operational variables. Desalin Water Treat:1–14. https://doi.org/10.1080/19443994.2015.1021842

  91. Mojarad M, Alemzadeh A, Ghoreishi G, Javaheri M (2016) Kerosene biodegradation ability and characterization of bacteria isolated from oil-polluted soil and water. J Environ Chem Eng 4:4323–4329. https://doi.org/10.1016/J.JECE.2016.09.035

    CAS  Article  Google Scholar 

  92. MPOC (2017) Annual report 2017. Selangor. http://mpoc.org.my/wp-content/uploads/2019/05/Anual-Report-2017.pdf. Accessed 23 Dec 2019

  93. MPOC (2018) Malaysian physical palm oil prices — Oct 25 (Noon). In: Malaysian Palm Oil Counc. http://www.mpoc.org.my/Malaysian_physical_palm_oil_prices_—_Oct_25_(Noon).aspx. Accessed 23 Dec 2019

  94. MSDS (1998) Material safety data sheet: sorbitan monooleate. In: Acros Org. https://fscimage.fishersci.com/msds/89813.htm. Accessed 23 Dec 2019

  95. Muthuraman G, Palanivelu K (2006) Transport of textile dye in vegetable oils based supported liquid membrane. Dyes Pigments 70:99–104. https://doi.org/10.1016/J.DYEPIG.2005.05.002

    CAS  Article  Google Scholar 

  96. Muthuraman G, Teng TT (2009) Use of vegetable oil in supported liquid membrane for the transport of rhodamine B. Desalination 249:1062–1066. https://doi.org/10.1016/J.DESAL.2009.05.017

    CAS  Article  Google Scholar 

  97. Muthuraman G, Teng TT, Leh CP, Norli I (2009) Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant. J Hazard Mater 163:363–369. https://doi.org/10.1016/j.jhazmat.2008.06.122

    CAS  Article  Google Scholar 

  98. Nandi S, Gangopadhyay S, Ghosh S (2005) Production of medium chain glycerides from coconut and palm kernel fatty acid distillates by lipase-catalyzed reactions. Enzym Microb Technol 36:725–728. https://doi.org/10.1016/J.ENZMICTEC.2004.12.016

    CAS  Article  Google Scholar 

  99. Narváez PC, Rincón SM, Castañeda LZ, Sánchez FJ (2008) Determination of some physical and transport properties of palm oil and of its methyl esters. Lat Am Appl Res 38:1–6

    Google Scholar 

  100. Natthapon S, Krit S (2015) Optimization of methyl ester production from palm fatty acid distillate using single-step esterification: a response surface methodology approach. ARPN J Eng Appl Sci 10:7075–7079

    CAS  Google Scholar 

  101. Ndiaye PM, Tavares FW, Dalmolin I, Dariva C, Oliveira D, Oliveira JV (2005) Vapor pressure data of soybean oil, castor oil, and their fatty acid ethyl ester derivatives. J Chem Eng Data 50:330–333. https://doi.org/10.1021/je049898o

    CAS  Article  Google Scholar 

  102. Nicolae M, Oprea F, Fendu EM (2015) Dipropylene glycol as a solvent for the extraction of aromatic hydrocarbons. Analysis and evaluation of the solvency properties and simulation of the extraction processes. Chem Eng Res Des 104:287–295. https://doi.org/10.1016/J.CHERD.2015.08.021

    CAS  Article  Google Scholar 

  103. Noah NFM, Othman N, Jusoh N (2016) Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. J Taiwan Inst Chem Eng 64:134–141. https://doi.org/10.1016/J.JTICE.2016.03.047

    CAS  Article  Google Scholar 

  104. Noah NFM, Jusoh N, Othman N, Sulaiman RNR, Parker NAMK (2018) Development of stable green emulsion liquid membrane process via liquid–liquid extraction to treat real chromium from rinse electroplating wastewater. J Ind Eng Chem 66:231–241. https://doi.org/10.1016/J.JIEC.2018.05.034

    CAS  Article  Google Scholar 

  105. Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 16:12871–12890. https://doi.org/10.3390/ijms160612871

    CAS  Article  Google Scholar 

  106. Osterhout WJV (1935) How do electrolytes enter the cell? Proc Natl Acad Sci U S A 21:125–132

    CAS  Article  Google Scholar 

  107. Othman N, Noah NFM, Shu LY, Ooi Z-Y, Jusoh N, Idroas M, Goto M (2017) Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chin J Chem Eng 25:45–52. https://doi.org/10.1016/J.CJCHE.2016.06.002

    CAS  Article  Google Scholar 

  108. Parhi PK (2013) Supported liquid membrane principle and its practices: a short review. J Chemother 2013:1–11. https://doi.org/10.1155/2013/618236

    CAS  Article  Google Scholar 

  109. Patel H, Shah S, Ahmed R, Ucan S (2018) Effects of nanoparticles and temperature on heavy oil viscosity. J Pet Sci Eng 167:819–828. https://doi.org/10.1016/J.PETROL.2018.04.069

    CAS  Article  Google Scholar 

  110. Pavón S, Fortuny A, Coll MT, Sastre AM (2018) Neodymium recovery from NdFeB magnet wastes using Primene 81R•Cyanex 572 IL by solvent extraction. J Environ Manag 222:359–367. https://doi.org/10.1016/J.JENVMAN.2018.05.054

    Article  Google Scholar 

  111. Phasukarratchai N (2019) Phase behavior and biofuel properties of waste cooking oil-alcohol-diesel blending in microemulsion form. Fuel 243:125–132. https://doi.org/10.1016/j.fuel.2019.01.003

    CAS  Article  Google Scholar 

  112. Pirmoradi M, Ashrafizadeh SN (2017) Removal of nitrate from water by bulk liquid membrane. Desalin Water Treat 58:228–238. https://doi.org/10.5004/dwt.2017.0194

    CAS  Article  Google Scholar 

  113. Raja Sulaiman RN, Othman N, Mohamed Noah NF, Jusoh N (2018) Removal of nickel from industrial effluent using a synergistic mixtures of acidic and solvating carriers in palm oil-based diluent via supported liquid membrane process. Chem Eng Res Des 137:360–375. https://doi.org/10.1016/J.CHERD.2018.07.034

    CAS  Article  Google Scholar 

  114. Rajab A, Sulaeman A, Sudirham S, Suwarno S (2011) A comparison of dielectric properties of palm oil with mineral and synthetic types insulating liquid under temperature variation. J Eng Technol Sci 43:191–208. https://doi.org/10.5614/itbj.eng.sci.2011.43.3.3

    Article  Google Scholar 

  115. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review. Resour-Effic Technol 2:175–184. https://doi.org/10.1016/J.REFFIT.2016.09.004

    Article  Google Scholar 

  116. Ratti R (2014) Ionic liquids: synthesis and applications in catalysis. Adv Chem 2014:1–16. https://doi.org/10.1155/2014/729842

    CAS  Article  Google Scholar 

  117. Rea R, De Angelis MG, Baschetti MG (2019) Models for facilitated transport membranes: a review. Membranes (Basel) 9:1–55. https://doi.org/10.3390/membranes9020026

    CAS  Article  Google Scholar 

  118. Reichardt C, Welton T (2010) Solvents and solvent effects in organic chemistry, 4th edn. Wiley-VCH, Weinheim

    Google Scholar 

  119. Renewable-Energy-Focus (2009) Malaysia launches national green technology policy. In: Renew. Energy Focus. http://www.renewableenergyfocus.com/view/4421/malaysia-launches-national-green-technology-policy/. Accessed 23 Dec 2019

  120. San Román MF, Bringas E, Ibañez R, Ortiz I (2009) Liquid membrane technology: fundamentals and review of its applications. J Chem Technol Biotechnol 85:2–10. https://doi.org/10.1002/jctb.2252

    CAS  Article  Google Scholar 

  121. Sarmad S, Xie Y, Mikkola J-P, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301. https://doi.org/10.1039/C6NJ03140D

    CAS  Article  Google Scholar 

  122. Shehata MS, ElKotb MM, Salem H (2014) Combustion characteristics for turbulent prevaporized premixed flame using commercial light diesel and kerosene fuels. J Comb Des 2014:1–17. https://doi.org/10.1155/2014/363465

    CAS  Article  Google Scholar 

  123. Shi L, Ma D, Liu P, Li X, Xi C, Wang C (2019) Experimental and numerical simulation studies on effects of viscosity reducers for steam assisted gravity drainage performances in extra-heavy oil reservoirs. J Pet Sci Eng 173:146–157. https://doi.org/10.1016/J.PETROL.2018.10.008

    CAS  Article  Google Scholar 

  124. Shin C-H, Kim J-Y, Kim J-Y, Kim HS, Lee HS, Mohapatra D, Ahn JW, Ahn JG, Bae W (2009) A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process. J Hazard Mater 162:1278–1284. https://doi.org/10.1016/J.JHAZMAT.2008.06.029

    CAS  Article  Google Scholar 

  125. Shokri A, Daraei P, Zereshki S (2020) Water decolorization using waste cooking oil: an optimized green emulsion liquid membrane by RSM. J Water Process Eng 33:1–12. https://doi.org/10.1016/j.jwpe.2019.101021

    Article  Google Scholar 

  126. Siciliano A, Russo D, Spasiano D, Marotta R, Race M, Fabbricino M, Galdiero E, Guida M (2019) Chronic toxicity of treated and untreated aqueous solutions containing imidazole-based ionic liquids and their oxydized by-products. Ecotoxicol Environ Saf 180:466–472. https://doi.org/10.1016/J.ECOENV.2019.05.048

    CAS  Article  Google Scholar 

  127. Sigma-Aldrich (2019) Span® 80. In: Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/product/sial/85548?lang=en&region=MY. Accessed 23 Dec 2019

  128. Söldner A, Zach J, König B (2019) Deep eutectic solvents as extraction media for metal salts and oxides exemplarily shown for phosphates from incinerated sewage sludge ash. Green Chem 21:321–328. https://doi.org/10.1039/C8GC02702A

    Article  Google Scholar 

  129. Soniya M, Muthuraman G (2015) Comparative study between liquid–liquid extraction and bulk liquid membrane for the removal and recovery of methylene blue from wastewater. J Ind Eng Chem 30:266–273. https://doi.org/10.1016/J.JIEC.2015.05.032

    CAS  Article  Google Scholar 

  130. Speight JG (2017) Handbook of petroleum refining. CRC Press, Boca Raton

    Google Scholar 

  131. Sprakel LMJ, Schuur B (2019) Solvent developments for liquid-liquid extraction of carboxylic acids in perspective. Sep Purif Technol 211:935–957. https://doi.org/10.1016/j.seppur.2018.10.023

    CAS  Article  Google Scholar 

  132. Stark JS, Corbett PA, Dunshea G, Johnstone G, King C, Mondon JA, Power ML, Samuel A, Snape I, Riddle M (2016) The environmental impact of sewage and wastewater outfalls in Antarctica: an example from Davis station, East Antarctica. Water Res 105:602–614. https://doi.org/10.1016/J.WATRES.2016.09.026

    CAS  Article  Google Scholar 

  133. Sulaiman RNR, Othman N (2018) Solvent extraction of nickel ions from electroless nickel plating wastewater using synergistic green binary mixture of D2EHPA-octanol system. J Environ Chem Eng 6:1814–1820. https://doi.org/10.1016/J.JECE.2018.02.035

    CAS  Article  Google Scholar 

  134. Sun H, Yao J, Li D, Li Q, Liu B, Liu S, Cong H, van Agtmaal S, Feng C (2017) Removal of phenols from coal gasification wastewater through polypropylene hollow fiber supported liquid membrane. Chem Eng Res Des 123:277–283. https://doi.org/10.1016/J.CHERD.2017.05.009

    CAS  Article  Google Scholar 

  135. Tadros TF (2015) Emulsion formation, stability, and rheology. In: Tadros TF (ed) Emulsion formation and stability, First. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–75

    Google Scholar 

  136. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38:1053–1064

    CAS  Article  Google Scholar 

  137. The-Star-Online (2018) Make green growth a priority. Star Online. https://www.thestar.com.my/news/nation/2018/10/19/make-green-growth-a-priority-we-must-focus-on-making-sustainable-development-a-mainstream-goal/. Accessed 23 Dec 2019

  138. Thung W-E, Ong S-A, Ho L-N, Wong Y-S, Ridwan F, Oon Y-L, Oon Y-S, Lehl HK (2018) Sustainable green technology on wastewater treatment: the evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell. J Environ Sci 66:295–300. https://doi.org/10.1016/J.JES.2017.05.010

    Article  Google Scholar 

  139. Tommasi E, Cravotto G, Galletti P, Grillo G, Mazzotti M, Sacchetti G, Samori C, Tabasso S, Tacchini M, Tagliavini E (2017) Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng 5:8316–8322. https://doi.org/10.1021/acssuschemeng.7b02074

    CAS  Article  Google Scholar 

  140. Top AGM (2010) Production and utilization of palm fatty acid distillate (PFAD). Lipid Technol 22:11–13. https://doi.org/10.1002/lite.200900070

    CAS  Article  Google Scholar 

  141. Tsivintzelis I, Kontogeorgis GM, Panayiotou C (2017) Dimerization of carboxylic acids: an equation of state approach. J Phys Chem B 121:2153–2163. https://doi.org/10.1021/acs.jpcb.6b10652

    CAS  Article  Google Scholar 

  142. UN-Water (2017) The United Nations world water development report 2017, wastewater: the untapped resource. Perugia. http://unesdoc.unesco.org/images/0024/002471/247153e.pdf. Accessed 23 Dec 2019

  143. US-EIA (2019) Refiner petroleum product prices by sales type. In: U.S. Energy Inf. Adm. https://www.eia.gov/dnav/pet/pet_pri_refoth_a_EPPK_PTG_dpgal_m.htm. Accessed 23 Dec 2019

  144. US-OSHA (2016) Hazard communication: hazard classification guidance for manufacturers, importers, and employers. In: Adm. Occup. Saf. Heal. U.S. Dep. Labor. https://www.osha.gov/Publications/OSHA3844.pdf. Accessed 23 Dec 2019

  145. van der Hoek J, de Fooij H, Struker A (2016) Wastewater as a resource: strategies to recover resources from Amsterdam’s wastewater. Resour Conserv Recycl 113:53–64. https://doi.org/10.1016/j.resconrec.2016.05.012

    Article  Google Scholar 

  146. Vastano M, Corrado I, Sannia G, Solaiman DKY, Pezzella C (2019) Conversion of no/low value waste frying oils into biodiesel and polyhydroxyalkanoates. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-50278-x

    CAS  Article  Google Scholar 

  147. Vuoti S, Narasimha K, Reinikainen K (2018) Green wastewater treatment flocculants and fixatives prepared from cellulose using high-consistency processing and deep eutectic solvents. J Water Process Eng 26:83–91. https://doi.org/10.1016/J.JWPE.2018.09.003

    Article  Google Scholar 

  148. Wang Y, Hou Y, Wu W, Liu D, Jia Y, Rena S (2016) Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from n-heptane using deep eutectic solvents. Green Chem 18:3089–3097. https://doi.org/10.1039/C5GC02909K

    CAS  Article  Google Scholar 

  149. Wang Q, Wei W, Gong Y, Yu Q, Li Q, Sun J, Yuan Z (2017) Technologies for reducing sludge production in wastewater treatment plants: state of the art. Sci Total Environ 587–588:510–521. https://doi.org/10.1016/J.SCITOTENV.2017.02.203

    Article  Google Scholar 

  150. Wang G, Cui Q, Yin L-J, Zheng X, Gao M-Z, Meng Y, Wang W (2018a) Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. J Pharm Biomed Anal 170:285–294. https://doi.org/10.1016/J.JPBA.2018.12.032

    Article  Google Scholar 

  151. Wang Y, Mei X, Ma T, Xue C, Wu M, Ji M, Li Y (2018b) Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation. J Clean Prod 197:742–749. https://doi.org/10.1016/J.JCLEPRO.2018.06.239

    CAS  Article  Google Scholar 

  152. Ward WJ, Robb WL (1967) Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science 156:1481–1484. https://doi.org/10.1126/science.156.3781.1481

    CAS  Article  Google Scholar 

  153. Welton T (2015) Solvents and sustainable chemistry. Proc R Soc A Math Phys Eng Sci 471:1–26. https://doi.org/10.1098/rspa.2015.0502

    Article  Google Scholar 

  154. Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706. https://doi.org/10.1007/s12551-018-0419-2

    CAS  Article  Google Scholar 

  155. Wilson AM, Bailey BJ, Tasker PA, Turkington JR, Grant RA, Love JB (2014) Solvent extraction: the coordination chemistry behind extractive metallurgy. Chem Soc Rev 43:123–134. https://doi.org/10.1039/C3CS60275C

    CAS  Article  Google Scholar 

  156. Wu T, Han B (2013) Supercritical carbon dioxide (CO2) as green solvent. In: Anastas P, Zimmerman J (eds) Innovations in green chemistry and green engineering. Springer, New York, pp 297–326

    Google Scholar 

  157. Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    CAS  Article  Google Scholar 

  158. Yang X, Zhang Q, Wang Z, Li S, Xie Q, Huang Z, Wang S (2017) Synergistic extraction of gold(I) from aurocyanide solution with the mixture of primary amine N1923 and bis(2-ethylhexyl) sulfoxide in supported liquid membrane. J Membr Sci 540:174–182. https://doi.org/10.1016/J.MEMSCI.2017.06.043

    CAS  Article  Google Scholar 

  159. Yang L, Li L, Hu H, Wan J, Li P (2019) Natural deep eutectic solvents for simultaneous extraction of multi-bioactive components from Jinqi Jiangtang preparations. Pharmaceutics 11:1–12. https://doi.org/10.3390/pharmaceutics11010018

    CAS  Article  Google Scholar 

  160. Yigezu ZD, Muthukumar K (2014) Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Convers Manag 84:326–333

    CAS  Article  Google Scholar 

  161. Zereshki S, Daraei P, Shokri A (2018) Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane. J Hazard Mater 356:1–8. https://doi.org/10.1016/J.JHAZMAT.2018.05.037

    CAS  Article  Google Scholar 

  162. Zhu M, Zhao H, Xia D, Du J, Xie H, Chen J (2018) Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem 258:87–94. https://doi.org/10.1016/J.FOODCHEM.2018.03.051

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education, Malaysia, under the Fundamental Research Grant Scheme (FRGS/1/2019/TK10/UITM/02/9).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siu Hua Chang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, S.H. Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09639-7

Download citation

Keywords

  • Sole conventional organic solvents
  • Mixed conventional-green organic solvents
  • Sole green organic solvents
  • Free fatty acid-rich oils
  • Triglyceride-rich oils
  • Deep eutectic solvents