A methodology for the technical-economic analysis of municipal solid waste systems based on social cost-benefit analysis with a valuation of externalities


Countries face a serious problem due to the generation and management of higher volumes of waste. Large-scale production of waste has promoted the establishment of various operations (collection, transport, treatment and disposal) for its management. When a MSW management system is implemented, it can generate different impacts or consequences (internal or external impacts). Generally, external impacts (social and environmental impacts) are not reflected in MSW economic analysis or taken into consideration in decision-making processes in regard to MSW management options. For this reason, the objective of this paper is present a methodology with which is viable to conduct the technical-economic analysis of municipal solid waste management projects based on social cost-benefit analysis (sCBA) as it considers internal and external impacts. Its main objectives are to determine the total benefits (the difference between revenues and costs) generated by a project and to reduce uncertainty and risk of investing in particular MSW management system. Finally, a case study was carried out to verify the validity of the methodology through analysis and valuation of different impacts of a light packaging waste and bulky waste facility. Through the application of the methodology, it has been possible to visualize that this facility is viable operationally (BP = 42.94 €/ton) as economically (BT = 87.73 €/ton).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2



Averting behaviour method


Benefit transfer


Complaint assessment method


Control cost method (abatement cost)


Choice experiment or choice modelling method


Cost of illness


Clean-up cost method


Contingent valuation


Dose response function


Experts’ assessment of damage costs


Hedonic price


Health production function


Life cycle costing


Municipal solid waste


Market price


Opportunity cost


Substitute price


Productivity change


Replacement cost method


Revealed preference


Social cost-benefit analysis


Stated preference


Sale price per volume unit


Travel cost method


Years of life lost


Value of a statistical life


Willingness to pay


Willingness to accept


Annual volume of waste treated

BE :

External benefit

BP :

Private benefit

BT :

Total benefit


Financial costs


Investment costs


Impact index (j = 1, …, J)


Total impacts


Project year index (n = 0, …, N)


Total project duration


Negative externalities


Opportunity cost


Operational and maintenance costs


Positive externalities




  1. Achillas C, Vlachokostas C, Moussiopoulos N, Banias G, Kafetzopoulos G, Karagiannidis A (2011) Social acceptance for the development of a waste-to-energy plant in an urban area. Resour Conserv Recycl 55:857–863. https://doi.org/10.1016/j.resconrec.2011.04.012

    Article  Google Scholar 

  2. Aleluia J, Ferrão P (2017) Assessing the costs of municipal solid waste treatment technologies in developing Asian countries. Waste Manag 69:592–608. https://doi.org/10.1016/j.wasman.2017.08.047

    Article  Google Scholar 

  3. Al-Salem SM, Papageorgiou LG, Lettieri P (2014) Techno-economic assessment of thermo-chemical treatment (TCT) units in the Greater London area. Chem Eng J 248:253–263. https://doi.org/10.1016/j.cej.2014.03.053

    CAS  Article  Google Scholar 

  4. Banco de España (2019) Tabla tipos de interés legal - Cliente Bancario, Banco de España. Retrieved April 8, 2020, from Eurosistema website: https://clientebancario.bde.es/pcb/es/menu-horizontal/productosservici/relacionados/tiposinteres/guia-textual/tiposinteresrefe/Tabla_tipos_de_interes_legal.html. Accessed 8 April 2020

  5. Barrett A, Connell PJO (2001) Does training generally work? The returns to in-company training does training. Ind Labor Relat Rev 54(3):647–662. https://doi.org/10.2307/2695995

    Article  Google Scholar 

  6. Black M, Karki J, Lee ACK, Makai P, Baral YR, Kritsotakis EI, Bernier A, Fossier Heckmann A (2019) The health risks of informal waste workers in the Kathmandu Valley: a cross-sectional survey. Public Health 166(0):10–18. https://doi.org/10.1016/j.puhe.2018.09.026

    CAS  Article  Google Scholar 

  7. BOE Ley 27/2014, de 27 de noviembre, del Impuesto sobre Sociedades. Pub. L. No. BOE-A-2014-12328, Boletín Oficial del Estado 1 (2014)

  8. BOE Ley 16/2017, de 1 de agosto, del cambio climático. Pub. L. No. BOE-A-2017-11001, Boletín Oficial del Estado 1 (2017a)

  9. BOE Ley 5/2017, de 28 de marzo, de medidas fiscales, administrativas, financieras y del sector público y de creación y regulación de los impuestos sobre grandes establecimientos comerciales, sobre estancias en establecimientos turísticos... , Pub. L. No. BOE-A-2017-7353, Boletín Oficial del Estado 53471 (2017b)

  10. Borchers AM, Duke JM, Parsons GR (2007) Does willingness to pay for green energy differ by source? Energy Policy 35(6):3327–3334. https://doi.org/10.1016/j.enpol.2006.12.009

    Article  Google Scholar 

  11. Bureau Van Dijk (2008) SABI [Recurs electrònic]. Retrieved June 19, 2019, from https://discovery.upc.edu/iii/encore/record/C__Rb1374872?lang=cat. Accessed 19 June 2019

  12. Da Cruz NF, Simões P, Marques RC (2012) Economic cost recovery in the recycling of packaging waste: the case of Portugal. J Clean Prod 37:8–18. https://doi.org/10.1016/j.jclepro.2012.05.043

    Article  Google Scholar 

  13. Dahlbo H, Ollikainen M, Peltola S, Myllymaa T, Melanen M (2007) Combining ecological and economic assessment of options for newspaper waste management. Resour Conserv Recycl 51(1):42–63. https://doi.org/10.1016/j.resconrec.2006.08.001

    Article  Google Scholar 

  14. Debnath S, Bose SK (2014) Exploring full cost accounting approach to evaluate cost of MSW services in India. Resour Conserv Recycl 83:87–95. https://doi.org/10.1016/j.resconrec.2013.12.007

    Article  Google Scholar 

  15. Domingo JL, Nadal M (2009) Domestic waste composting facilities: A review of human health risks. Environ Int 35(2):382–389. https://doi.org/10.1016/j.envint.2008.07.004

    CAS  Article  Google Scholar 

  16. Domingo JL, Rovira J, Nadal M, Schuhmacher M (2017) High cancer risks by exposure to PCDD/Fs in the neighborhood of an integrated waste management facility. Sci Total Environ 607–608:63–68. https://doi.org/10.1016/j.scitotenv.2017.06.272

    CAS  Article  Google Scholar 

  17. Dutkiewicz J, Jabloński L, Olenchock SA (1988) Occupational biohazards: a review. Am J Ind Med 14(5):605–623. https://doi.org/10.1002/ajim.4700140511

    CAS  Article  Google Scholar 

  18. Ellen MacArthur Foundation (2017) The new plastics economy: rethinking the future of plastics & catalysing action. In Ellen MacArthur Foundation. Retrieved from https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action. Accessed 10 June 2019

  19. Eshet T, Ayalon O, Shechter M (2005) A critical review of economic valuation studies of externalities from incineration and landfilling. Waste Management and Research 23(6):487–504. https://doi.org/10.1177/0734242X05060966

    Article  Google Scholar 

  20. Eshet T, Ayalon O, Shechter M (2006) Valuation of externalities of selected waste management alternatives: a comparative review and analysis. Resour Conserv Recycl 46(4):335–364. https://doi.org/10.1016/j.resconrec.2005.08.004

    Article  Google Scholar 

  21. Eunomia Research & Consulting (2001) Costs for municipal waste management in the EU. Directorate General Environment, 79

  22. European Commission (2000) A study on the economic valuation of environmental externalities from landfill disposal and incineration of waste. Final Main Report. In European Commission, DG Environment. Retrieved from http://ec.europa.eu/environment/enveco/waste/pdf/cowi_ext_from_landfill.pdf. Accessed 11 July 2019

  23. European Commission (2014) Guide to cost-benefit analysis of investment projects. Economic appraisal tool for Cohesion Policy 2014–2020. In Regional and Urban Policy. https://doi.org/10.2776/97516

  24. European Commission (2015) Closing the loop - an EU action plan for the circular economy. In Communication from the Commision to the European Parliament, the Council, the European Economic and Social Commitee and the Commitee of the Regions Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0614&from=EN. Accessed 19 June 2019

  25. European Commission (2017) Guidance on municipal waste data collection. Eurostat Directorate E: Sectoral and Regional Statistics, p 18. Retrieved from https://ec.europa.eu/eurostat/documents/342366/351811/Municipal+Waste+guidance/bd38a449-7d30-44b6-a39f-8a20a9e67af2. Accessed 08 June 2019

  26. European Parliament Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste. L 332 Official Journal of the European § (2000)

  27. European Parliament Directive 2008/98/EC of the European Parliament and the Council of 19 November 2008 on Waste and Repealing Centain Directives. Journal of the European Union § (2008)

  28. European Parliament (2017) Towards a circular economy – waste management in the EU. In STOA - Science and Technology Options Assessment https://doi.org/10.2861/978568

  29. Ezeah C, Fazakerley JA, Roberts CL (2013) Emerging trends in informal sector recycling in developing and transition countries. Waste Manag 33(11):2509–2519. https://doi.org/10.1016/j.wasman.2013.06.020

    Article  Google Scholar 

  30. Faura-Casas Auditors Consultors (2017) Cuentas Anuales 2017 SEMESA. Retrieved from https://www.tersa.cat/es-es/grup-tersa/transparencia/. Accessed 08 April 2020

  31. Fiksel J, Eason T, & Frederickson H (2012) A framework for sustainability indicators at EPA. Environmental Protection Agency, 59. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Framework+for+Sustainability+Indicators+at+EPA#0. Accessed 25 June 2019

  32. Gaglias A, Mirasgedis S, Tourkolias C, Georgopoulou E (2016) Implementing the contingent valuation method for supporting decision making in the waste management sector. Waste Manag 53:237–244. https://doi.org/10.1016/j.wasman.2016.04.012

    CAS  Article  Google Scholar 

  33. Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manag 29(8):2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028

    CAS  Article  Google Scholar 

  34. González-Torre PL, Adenso-Díaz B (2005) Influence of distance on the motivation and frequency of household recycling. Waste Manag 25(1):15–23. https://doi.org/10.1016/j.wasman.2004.08.007

  35. Hite D, Chern W, Hitzhusen F, Randall A (2001) Property-value impacts of an environmental disamenity: the case of landfills. J Real Estate Financ Econ 22(2–3):185–202. https://doi.org/10.1023/A:1007839413324

    Article  Google Scholar 

  36. Hoogmartens R, Van Passel S, Van Acker K, Dubois M (2014) Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environ Impact Assess Rev 48:27–33. https://doi.org/10.1016/j.eiar.2014.05.001

    Article  Google Scholar 

  37. Jamasb T, Nepal R (2010) Issues and options in waste management: a social cost-benefit analysis of waste-to-energy in the UK. Resour Conserv Recycl 54(12):1341–1352. https://doi.org/10.1016/j.resconrec.2010.05.004

    Article  Google Scholar 

  38. Kaza S, Yao L, Bhada-Tata P, & Woerden F Van (2018) What a waste 2.0- a global snapshot of solid waste management to 2050. In Urban Development Series. https://doi.org/10.1596/978-1-4648-1329-0

  39. Kim J, Kim J (2015) Korean public’s perceptions on supply security of fossil fuels: a contingent valuation analysis. Appl Energy 137:301–309. https://doi.org/10.1016/j.apenergy.2014.10.016

    Article  Google Scholar 

  40. Latinopoulos D, Mentis C, Bithas K (2018) The impact of a public information campaign on preferences for marine environmental protection. The case of plastic waste. Mar Pollut Bull 131(April):151–162. https://doi.org/10.1016/j.marpolbul.2018.04.002

    CAS  Article  Google Scholar 

  41. Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566–567:333–349. https://doi.org/10.1016/j.scitotenv.2016.05.084

    CAS  Article  Google Scholar 

  42. Li J, Zhang Y, Sun T, Hao H, Wu H, Wang L, Chen Y, Xing L, Niu Z (2018) The health risk levels of different age groups of residents living in the vicinity of municipal solid waste incinerator posed by PCDD/Fs in atmosphere and soil. Sci Total Environ 631–632:81–91. https://doi.org/10.1016/j.scitotenv.2018.03.009

    CAS  Article  Google Scholar 

  43. Lim SY, Lim KM, Yoo SH (2014) External benefits of waste-to-energy in Korea: a choice experiment study. Renew Sust Energ Rev 34:588–595. https://doi.org/10.1016/j.rser.2014.03.045

    Article  Google Scholar 

  44. Littau P, Jyothi Jujagiri N, Adlbrecht G (2010) 25 years of stakeholder theory in project management literature (1984–2009). Proj Manag J 41(4):17–29. https://doi.org/10.1002/pmj.20195

    Article  Google Scholar 

  45. Loughlin DH, Barlaz MA (2006) Policies for strengthening markets for recyclables: a worldwide perspective. Crit Rev Environ Sci Technol 36:287–326. https://doi.org/10.1080/10643380600566952

    Article  Google Scholar 

  46. Ma W, Tai L, Qiao Z, Zhong L, Wang Z, Fu K, Chen G (2018) Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator : a case study in North China. Sci Total Environ 631–632:348–357. https://doi.org/10.1016/j.scitotenv.2018.03.011

    CAS  Article  Google Scholar 

  47. Martinez-Sanchez V, Kromann MA, Astrup TF (2015) Life cycle costing of waste management systems: overview, calculation principles and case studies. Waste Manag 36:343–355. https://doi.org/10.1016/j.wasman.2014.10.033

    Article  Google Scholar 

  48. Massarutto A, de Carli A, Graffi M (2011) Material and energy recovery in integrated waste management systems: a life-cycle costing approach. Waste Manag 31(9–10):2102–2111. https://doi.org/10.1016/j.wasman.2011.05.017

    Article  Google Scholar 

  49. Mavrotas G, Gakis N, Skoulaxinou S, Katsouros V, Georgopoulou E (2015) Municipal solid waste management and energy production: consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions. Renew Sust Energ Rev 51:1205–1222. https://doi.org/10.1016/j.rser.2015.07.029

    Article  Google Scholar 

  50. Medina R, De Andrés A, & Seguí-Amórtegui L (2019) Methodology for technical-economic analysis of municipal solid waste management systems. 5th International Congress on Water, Waste and Energy Management, (July), 72–73. Retrieved from https://sciknowledge-conferences.com/publications/. Accessed 20 Dec 2019

  51. Mesa-Jurado MA, Martin-Ortega J, Ruto E, Berbel J (2012) The economic value of guaranteed water supply for irrigation under scarcity conditions. Agric Water Manag 113:10–18. https://doi.org/10.1016/j.agwat.2012.06.009

    Article  Google Scholar 

  52. Milios L, Holm L, Mckinnon D, Christensen C, Katrine M, Hallstrøm M (2018) Plastic recycling in the Nordics: a value chain market analysis. Waste Manag 76:180–189. https://doi.org/10.1016/j.wasman.2018.03.034

    Article  Google Scholar 

  53. Miliute-Plepiene J, Hage O, Plepys A, Reipas A (2016) What motivates households recycling behaviour in recycling schemes of different maturity? Lessons from Lithuania and Sweden. Resour Conserv Recycl 113:40–52. https://doi.org/10.1016/j.resconrec.2016.05.008

    Article  Google Scholar 

  54. Mital A, Pennathur A, Huston RL, Thompson D, Pittman M, Markle G, Kaber DB, Crumpton L, Bishu RR, Rajurkar KP, Rajan V, Fernandez JE, McMulkin M, Deivanayagam S, Ray PS, Sule D (1999) The need for worker training in advanced manufacturing technology ( AMT ) environments : a white paper. Int J Ind Ergon 24:173–184. https://doi.org/10.1016/S0169-8141(98)00024-9

    Article  Google Scholar 

  55. Moqbel S, Reinhart D, Chen R (2010) Factors influencing spontaneous combustion of solid waste. Waste Manag 30:1600–1607. https://doi.org/10.1016/j.wasman.2010.01.006

    CAS  Article  Google Scholar 

  56. Nahman A (2011) Pricing landfill externalities: emissions and disamenity costs in Cape Town, South Africa. Waste Manag 31(9–10):2046–2056. https://doi.org/10.1016/j.wasman.2011.05.015

    Article  Google Scholar 

  57. Naveen BP, Sumalatha J, Malik RK (2019) Numerical modelling of leachate transport into water bodies at a landfill site. J Environ Eng Sci 15(1):6–15. https://doi.org/10.1680/jenes.18.00042

    Article  Google Scholar 

  58. Navrud S (2001) Valuing health impacts from air pollution in Europe. Environ Resour Econ 20:305–329. https://doi.org/10.1023/A:1013099120078

  59. Nie E, Zheng G, Shao Z, Yang J, Chen T (2018) Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Manag 79:188–195. https://doi.org/10.1016/j.wasman.2018.07.024

    CAS  Article  Google Scholar 

  60. OECD (2006) Cost-benefit analysis and the environment: recent developments. In OECD https://doi.org/10.1787/9789264010055-en

  61. Pang CC, Lo WF, Yan RWM, Hau BCH (2019) Plant community composition on landfill sites after multiple years of ecological restoration. Landsc Res 00(00):1–12. https://doi.org/10.1080/01426397.2019.1674266

    Article  Google Scholar 

  62. Pearce DW (1992) Macmillan Dictionary of Modern Economics (4th ed.). https://doi.org/10.1007/978-1-349-22136-3

  63. Rabl A, Spadaro JV, Bachmann TM (2010) Estimating environmental health costs: monetary valuation of trace pollutants. Environnement, Risques & Santé 9(2):136–150. https://doi.org/10.1684/ers.2010.0338

    Article  Google Scholar 

  64. Risch BWK (1978) The raw material supply of the European community. Resources Policy 4(3):181–188. https://doi.org/10.1016/0301-4207(78)90045-4

    Article  Google Scholar 

  65. Sasao T (2004) An estimation of the social costs of landfill siting using a choice experiment. Waste Manag 24(8):753–762. https://doi.org/10.1016/j.wasman.2004.05.003

    Article  Google Scholar 

  66. Seguí L, Alfranca O, García J (2009) Techno-economical evaluation of water reuse for wetland restoration: a case study in a natural park in Catalonia, northeastern Spain. Desalination 246(1–3):179–189. https://doi.org/10.1016/j.desal.2008.03.051

    CAS  Article  Google Scholar 

  67. Seguí-Amórtegui L, Alfranca-Burriel O, Moeller-Chávez G (2014) Metodología para el análisis técnico-económico de los sistemas de regeneración y reutilización de las aguas residuales. Tecnología y Ciencias Del Agua V(2):55–70. Retrieved from http://www.scielo.org.mx/pdf/tca/v5n2/v5n2a4.pdf. Accessed 11 July 2019

  68. SEMESA (2017) Declaración ambiental 2017 SEMESA. Barcelona

  69. Shibata T, Wilson JL, Watson LM, Nikitin IV, Ansariadi, La Ane R, Maidin A (2015) Life in a landfill slum, children’s health, and the millennium development goals. Sci Total Environ 536:408–418. https://doi.org/10.1016/j.scitotenv.2015.05.137

    CAS  Article  Google Scholar 

  70. Shiralipour A, McConnell DB, Smith WH (1992) Uses and benefits of MSW compost: a review and an assessment. Biomass Bioenergy 3(3–4):267–279. https://doi.org/10.1016/0961-9534(92)90031-K

    Article  Google Scholar 

  71. Teerioja N, Moliis K, Kuvaja E, Ollikainen M, Punkkinen H, Merta E (2012) Pneumatic vs. door-to-door waste collection systems in existing urban areas: a comparison of economic performance. Waste Manag 32(10):1782–1791. https://doi.org/10.1016/j.wasman.2012.05.027

    Article  Google Scholar 

  72. Tong H, Yao Z, Wei J, Mao L, Zhang J, Shu T (2018) Harvest green energy through energy recovery from waste: a technology review and an assessment of Singapore. Renew Sust Energ Rev 98(September):163–178. https://doi.org/10.1016/j.rser.2018.09.009

    Article  Google Scholar 

  73. Uddin SMN, Gutberlet J (2018) Livelihoods and health status of informal recyclers in Mongolia. Resour Conserv Recycl 134(July 2018):1–9. https://doi.org/10.1016/j.resconrec.2018.02.006

    Article  Google Scholar 

  74. United Nations (2015) The sustainable development agenda. Retrieved June 6, 2019, from sustainable development GOALS website: https://www.un.org/sustainabledevelopment/development-agenda/. Accessed 6 June 2019

  75. Van Tongeren M, Van Amelsvoort L, Heederik D (1997) Exposure to organic dusts, endotoxins, and microorganisms in the municipal waste industry. Int J Occup Environ Health 3(1):30–36. https://doi.org/10.1179/oeh.1997.3.1.30

    Article  Google Scholar 

  76. Volquind D, Bagatini A, Monteiro GMC, Londero JR, Benvenutti GD (2013) Occupational hazards and diseases related to the practice of anesthesiology. Brazilian Journal of Anesthesiology (Elsevier) 63(2):227–232. https://doi.org/10.1016/j.bjane.2012.06.006

    Article  Google Scholar 

  77. Weng YC, Fujiwara T (2011) Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan. Waste Manag 31(6):1393–1406. https://doi.org/10.1016/j.wasman.2011.01.016

    Article  Google Scholar 

  78. Winkler J, Bilitewski B (2007) Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag 27(8):1021–1031. https://doi.org/10.1016/j.wasman.2007.02.023

    Article  Google Scholar 

  79. Woon KS, Lo IMC (2016) An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator. Resour Conserv Recycl 107:104–114. https://doi.org/10.1016/j.resconrec.2015.11.020

    Article  Google Scholar 

  80. World Health Organization (2010) Exposure to dioxins and dioxins-like substances: a major public health concern. Retrieved from: https://www.who.int/ipcs/features/dioxins.pdf?ua=1. Accessed 1 July 2019

  81. Xiao L, Zhang G, Zhu Y, Lin T (2017) Promoting public participation in household waste management: a survey based method and case study in Xiamen city, China. J Clean Prod 144:313–322. https://doi.org/10.1016/j.jclepro.2017.01.022

    Article  Google Scholar 

  82. Zheng GJ, Leung AOW, Jiao LP, Wong MH (2008) Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: sources, environmental levels and potential human health impacts. Environ Int 34(7):1050–1061. https://doi.org/10.1016/j.envint.2008.02.011

    CAS  Article  Google Scholar 

  83. Zolnikov TR, da Silva RC, Tuesta AA, Marques CP, Cruvinel VRN (2018) Ineffective waste site closures in Brazil: a systematic review on continuing health conditions and occupational hazards of waste collectors. Waste Manag 80:26–39. https://doi.org/10.1016/j.wasman.2018.08.047

    Article  Google Scholar 

  84. Zwick T (2006) The impact of training intensity on establishment productivity. Ind Relat 45(1):26–46. https://doi.org/10.1111/j.1468-232X.2006.00412.x

    Article  Google Scholar 

Download references


The financial support to the main author (CVU-612612) from the National Council of Science and Technology (CONACYT) México is acknowledged.

Author information



Corresponding author

Correspondence to Rubí Medina-Mijangos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Eyup Dogan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medina-Mijangos, R., De Andrés, A., Guerrero-Garcia-Rojas, H. et al. A methodology for the technical-economic analysis of municipal solid waste systems based on social cost-benefit analysis with a valuation of externalities. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09606-2

Download citation


  • Methodology
  • Economic analysis
  • Social CBA
  • Municipal solid waste
  • Externalities
  • Costs and revenues