• Physical, chemical and biological process techniques and tools for pollution prevention and sustainability
  • Published:

Utilisation of environmentally friendly okara-based biosorbent for cadmium(II) removal

Abstract

Heavy metals released by various industries are among the major pollutants found in water resources. In this research, biosorption technique was employed to remove cadmium (Cd2+) from an aqueous system using a novel biosorbent developed from okara waste (OW), a residue from soya bean–based food and beverage processing. Characterisation results revealed that the OW biosorbent contained functional groups such as hydroxyl-, carboxyl- and sulphur-based functional groups, and the surface of the biosorbent was rough with multiple fissures which might be the binding sites for the pollutant. The effects of dosage, solution pH, initial Cd2+ concentration, temperature and contact time were investigated using batch adsorption mode. The biosorption equilibrium and kinetic were best described by the Langmuir and Elovich models, respectively. The maximum biosorption capacities predicted by the Langmuir model were 10.91–14.80 mg/g at 30–70 °C, and the biosorption process was favourable as evident from 0 < RL < 1. The uptake of Cd2+ by the OW biosorbent was spontaneous and endothermic. The plausible biosorption mechanisms of this study could be ionic exchange, hydrogen bonding and electrostatic interactions. The Cd2+ loaded OW biosorbent could be regenerated using 0.4 M of HCl solution and regeneration was studied for 4 adsorption-desorption cycles. The present investigation supported that OW can be reused as a value-added biosorbent product for the removal of Cd2+ from the contaminated water.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Banerjee S, Mukherjee S, LaminKa-ot A, Joshi SR, Mandal T, Halder G (2016) Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: isotherm, kinetics, thermodynamics, and cost estimation. J Adv Res 7:597–610. https://doi.org/10.1016/j.jare.2016.06.002

    CAS  Article  Google Scholar 

  2. Barquilha CER, Cossich ES, Tavares CRG, da Silva EA (2019) Biosorption of nickel and copper ions from synthetic solution and electroplating effluent using fixed bed column of immobilized brown algae. Journal of Water Process Engineering 32:100904. https://doi.org/10.1016/j.jwpe.2019.100904

    Article  Google Scholar 

  3. Batra S, Datta D, Sai Beesabathuni N, Kanjolia N, Saha S (2019) Adsorption of Bisphenol-A from aqueous solution using amberlite XAD-7 impregnated with aliquat 336: batch, column, and design studies. Process Saf Environ Prot 122:232–246. https://doi.org/10.1016/j.psep.2018.12.005

    CAS  Article  Google Scholar 

  4. Beni AA, Esmaeili A (2020) Biosorption, an efficient method for removing heavy metals from industrial effluents: a review. Environ Technol Innov 17:100503. https://doi.org/10.1016/j.eti.2019.100503

    Article  Google Scholar 

  5. Chen X, Chen X, Wang Y, Wang X, Wang M, Liang Y, Zhu G, Jin T (2020) A nomogram for predicting the renal dysfunction in a Chinese population with reduction in cadmium exposure based on an 8 years follow up study. Ecotoxicol Environ Saf 191:110251. https://doi.org/10.1016/j.ecoenv.2020.110251

    CAS  Article  Google Scholar 

  6. Cid H, Ortiz C, Pizarro J, Moreno-Piraján JC (2020) Effect of copper (ii) biosorption over light metal cation desorption in the surface of macrocystis pyrifera biomass. Journal of Environmental Chemical Engineering 8:103729. https://doi.org/10.1016/j.jece.2020.103729

    CAS  Article  Google Scholar 

  7. de Freitas GR, da Silva MGC, Vieira MGA (2019) Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environ Sci Pollut Res 26:19097–19118. https://doi.org/10.1007/s11356-019-05330-8

    Article  Google Scholar 

  8. Devatha CP, Shivani S (2020) Novel application of maghemite nanoparticles coated bacteria for the removal of cadmium from aqueous solution Journal of Environmental Management 258:110038 https://doi.org/10.1016/j.jenvman.2019.110038

  9. DOE (1974) Environmental Quality (Sewage And Industrial Effluents) Regulations 1979, in: D.o. Environment (Ed.), Malaysia.

  10. Dubinin MM, Radushkevich LV (1947) Zh Nevropatol Psikh 79:331

    Google Scholar 

  11. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  12. Gao J-F, Wang J-H, Yang C, Wang S-Y, Peng Y-Z (2011) Binary biosorption of Acid Red 14 and Reactive Red 15 onto acid treated okara: simultaneous spectrophotometric determination of two dyes using partial least squares regression. Chem Eng J 171:967–975. https://doi.org/10.1016/j.cej.2011.04.047

    CAS  Article  Google Scholar 

  13. Gaur N, Kukreja A, Yadav M, Tiwari A (2018) Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent: equilibrium isotherm and thermal stability studies. Appl Water Sci 8:98. https://doi.org/10.1007/s13201-018-0743-5

    CAS  Article  Google Scholar 

  14. Hafdi H, Joudi M, Mouldar J, Hatimi B, Nasrellah H, El Mhammedi MA, Bakasse M (2020) Design of a new low cost natural phosphate doped by nickel oxide nanoparticles for capacitive adsorption of reactive red 141 azo dye. Environ Res 184:109322. https://doi.org/10.1016/j.envres.2020.109322

    CAS  Article  Google Scholar 

  15. Hall KR, Eagleton L, Acrivos A, Vermeulen T (1966) Pore- and solid diffusion kinetics in fixed-bed adsorption under constant- pattern conditions. Ind Eng Chem Fundam 5:212–223

    CAS  Article  Google Scholar 

  16. Hassan SHA, Koutb M, Nafady NA, Hassan EA (2018) Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere 202:750–756. https://doi.org/10.1016/j.chemosphere.2018.03.114

    CAS  Article  Google Scholar 

  17. Hiew BYZ, Lee LY, Lee XJ, Gan S, Thangalazhy-Gopakumar S, Lim SS, Pan GT, Yang TCK (2019) Adsorptive removal of diclofenac by graphene oxide: optimization, equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 98:150–162. https://doi.org/10.1016/j.jtice.2018.07.034

    CAS  Article  Google Scholar 

  18. Jin Y, Teng C, Yu S, Song T, Dong L, Liang J, Bai X, Liu X, Hu X, Qu J (2018) Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate. Chemosphere 191:799–808. https://doi.org/10.1016/j.chemosphere.2017.08.154

    CAS  Article  Google Scholar 

  19. Kadiene EU, Meng P-J, Hwang J-S, Souissi S (2019) Acute and chronic toxicity of cadmium on the copepod Pseudodiaptomus annandalei: a life history traits approach. Chemosphere 233:396–404. https://doi.org/10.1016/j.chemosphere.2019.05.220

    CAS  Article  Google Scholar 

  20. Kharrazi SM, Mirghaffari N, Dastgerdi MM, Soleimani M (2020) A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder Technol 366:358–368. https://doi.org/10.1016/j.powtec.2020.01.065

    CAS  Article  Google Scholar 

  21. Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S (2011) Adsorption behavior of nickel (II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J 167:122–131

    CAS  Article  Google Scholar 

  22. Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  23. Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S (2020) Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresour Technol 309:123296. https://doi.org/10.1016/j.biortech.2020.123296

    CAS  Article  Google Scholar 

  24. Langmuir I (1918) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Article  Google Scholar 

  25. Lee XJ, Lee L, Hiew B, Gan S, Thangalazhy-Gopakumar S (2017) Evaluation of the effectiveness of low cost adsorbents from oil palm wastes for wastewater treatment. Chem Eng Trans 56:937–942

    Google Scholar 

  26. Li WC, Law FY, Chan YHM (2017) Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk Environmental Science and Pollution Research 24:8903–8915 https://doi.org/10.1007/s11356-015-5081-7

  27. Li X, Ming Q, Cai R, Yue T, Yuan Y, Gao Z, Wang Z (2020) Biosorption of Cd2+ and Pb2+ from apple juice by the magnetic nanoparticles functionalized lactic acid bacteria cells Food Control 109:106916 https://doi.org/10.1016/j.foodcont.2019.106916

  28. Li Y, Wei Y, Huang S, Liu X, Jin Z, Zhang M, Qu J, Jin Y (2018) Biosorption of Cr(VI) onto Auricularia auricula dreg biochar modified by cationic surfactant: characteristics and mechanism. J Mol Liq 269:824–832. https://doi.org/10.1016/j.molliq.2018.08.060

    CAS  Article  Google Scholar 

  29. Lin D, Long X, Huang Y, Yang Y, Wu Z, Chen H, Zhang Q, Wu D, Qin W, Tu Z (2020) Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT 123:109059. https://doi.org/10.1016/j.lwt.2020.109059

    CAS  Article  Google Scholar 

  30. Liu J, Ge X, Ye X, Wang G, Zhang H, Zhou H, Zhang Y, Zhao H (2016) 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J Mater Chem A 4:1970–1979. https://doi.org/10.1039/C5TA08106H

    CAS  Article  Google Scholar 

  31. Mohanta D, Ahmaruzzaman M (2018) Bio-inspired adsorption of arsenite and fluoride from aqueous solutions using activated carbon@SnO2 nanocomposites: isotherms, kinetics, thermodynamics, cost estimation and regeneration studies. Journal of Environmental Chemical Engineering 6:356–366. https://doi.org/10.1016/j.jece.2017.11.076

    CAS  Article  Google Scholar 

  32. Mousavi S, Shahraki F, Aliabadi M, Haji A, Deuber F, Adlhart C (2019) Surface enriched nanofiber mats for efficient adsorption of Cr(VI) inspired by nature. Journal of Environmental Chemical Engineering 7:102817. https://doi.org/10.1016/j.jece.2018.102817

    CAS  Article  Google Scholar 

  33. Ng HW, Lee LY, Chan WL, Gan S, Chemmangattuvalappil N (2016) Luffa acutangula peel as an effective natural biosorbent for malachite green removal in aqueous media: equilibrium, kinetic and thermodynamic investigations. Desalin Water Treat 57:7302–7311. https://doi.org/10.1080/19443994.2015.1016460

    CAS  Article  Google Scholar 

  34. Nguyen TAH, Ngo HH, Guo WS, Nguyen TV, Zhang J, Liang S, Chen SS, Nguyen NC (2014) A comparative study on different metal loaded soybean milk by-product ‘okara’ for biosorption of phosphorus from aqueous solution. Bioresour Technol 169:291–298. https://doi.org/10.1016/j.biortech.2014.06.075

    CAS  Article  Google Scholar 

  35. Noormohamadi HR, Fat'hi MR, Ghaedi M, Ghezelbash GR (2019) Potentiality of white-rot fungi in biosorption of nickel and cadmium: Modeling optimization and kinetics study Chemosphere 216:124–130 https://doi.org/10.1016/j.chemosphere.2018.10.113

  36. Peng S-H, Wang R, Yang L-Z, He L, He X, Liu X (2018) Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicol Environ Saf 165:61–69. https://doi.org/10.1016/j.ecoenv.2018.08.084

    CAS  Article  Google Scholar 

  37. Saraeian A, Hadi A, Raji F, Ghassemi A, Johnson M (2018) Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum x drummondii (Sudangrass). Journal of Environmental Chemical Engineering 6:3322–3331. https://doi.org/10.1016/j.jece.2018.05.018

    CAS  Article  Google Scholar 

  38. Sha T, Liu J, Sun M, Li L, Bai J, Hu Z, Zhou M (2019) Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 200:300–306. https://doi.org/10.1016/j.talanta.2019.03.071

    CAS  Article  Google Scholar 

  39. Song T, Liang J, Bai X, Li Y, Wei Y, Huang S, Dong L, Qu J, Jin Y (2017) Biosorption of cadmium ions from aqueous solution by modified Auricularia Auricular matrix waste. J Mol Liq 241:1023–1031. https://doi.org/10.1016/j.molliq.2017.06.111

    CAS  Article  Google Scholar 

  40. Sun C, Wu X, Chen X, Li X, Zheng Z, Jiang S (2020) Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chem 316:126243. https://doi.org/10.1016/j.foodchem.2020.126243

    CAS  Article  Google Scholar 

  41. Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physicochim URSS 12:217–222

    Google Scholar 

  42. Ullah I, Yin T, Xiong S, Zhang J, Z-u D, Zhang M (2017) Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT Food Sci Technol 82:15–22. https://doi.org/10.1016/j.lwt.2017.04.014

    CAS  Article  Google Scholar 

  43. Villen-Guzman M, Gutierrez-Pinilla D, Gomez-Lahoz C, Vereda-Alonso C, Rodriguez-Maroto JM, Arhoun B (2019) Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environ Res 179:108849. https://doi.org/10.1016/j.envres.2019.108849

    CAS  Article  Google Scholar 

  44. Voss GB, Osorio H, Valente LMP, Pintado ME (2019) Impact of thermal treatment and hydrolysis by Alcalase and Cynara cardunculus enzymes on the functional and nutritional value of okara. Process Biochem 83:137–147. https://doi.org/10.1016/j.procbio.2019.05.010

    CAS  Article  Google Scholar 

  45. Wang L, Liu X, Lee D-J, Tay J-H, Zhang Y, Wan C-L, Chen X-F (2018) Recent advances on biosorption by aerobic granular sludge. J Hazard Mater 357:253–270. https://doi.org/10.1016/j.jhazmat.2018.06.010

    CAS  Article  Google Scholar 

  46. Weber WJ, Morris JC (1963) Kinetics of adsorption of carbon from solution. Journal of the Sanitary Engineering Division, American Society of Civil Engineering 89:31–60

    Google Scholar 

  47. Yan Y-Z, Zheng W, Huang D-Z, Xiao Z-Y, Park SS, Ha C-S, Zhai S-R (2020) Hierarchical multi-porous carbonaceous beads prepared with nano-CaCO3 in-situ encapsulated hydrogels for efficient batch and column removal of antibiotics from water. Microporous Mesoporous Mater 293:109830. https://doi.org/10.1016/j.micromeso.2019.109830

    CAS  Article  Google Scholar 

  48. Yang T, Liu T-X, Li X-T, Tang C-H (2019) Novel nanoparticles from insoluble soybean polysaccharides of okara as unique pickering stabilizers for oil-in-water emulsions. Food Hydrocoll 94:255–267. https://doi.org/10.1016/j.foodhyd.2019.03.035

    CAS  Article  Google Scholar 

  49. Yu C-A, Yang C-Y (2019) Bio-ionic liquid pretreatment and ultrasound-promoted enzymatic hydrolysis of black soybean okara. J Biosci Bioeng 127:767–773. https://doi.org/10.1016/j.jbiosc.2018.12.007

    CAS  Article  Google Scholar 

  50. Yusof MSM, Othman MHD, Mustafa A, Rahman MA, Jaafar J, Ismail AF (2018) Feasibility study of cadmium adsorption by palm oil fuel ash (POFA)-based low-cost hollow fibre zeolitic membrane Environmental Science and Pollution Research 25:21644–21655 https://doi.org/10.1007/s11356-018-2286-6

  51. Zhao W, Zhou T, Zhu J, Sun X, Xu Y (2018) Adsorption of cadmium ions using the bioadsorbent of Pichia kudriavzevii YB5 immobilized by polyurethane foam and alginate gels. Environ Sci Pollut Res 25:3745–3755. https://doi.org/10.1007/s11356-017-0785-5

    CAS  Article  Google Scholar 

  52. Zhao Y, Song X, Yu L, Han B, Li T, Yu X (2019) Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1. Energy Convers Manag 188:76–85. https://doi.org/10.1016/j.enconman.2019.03.041

    CAS  Article  Google Scholar 

  53. Zhou Q, Liao B, Lin L, Song Z, Khan ZH, Lei M (2019) Characteristic of adsorption cadmium of red soil amended with a ferromanganese oxide-biochar composite Environmental Science and Pollution Research 26:5155–5163 https://doi.org/10.1007/s11356-018-3942-6

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lai Yee Lee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hiew, B.Y.Z., Lee, L.Y., Lee, X.J. et al. Utilisation of environmentally friendly okara-based biosorbent for cadmium(II) removal. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09594-3

Download citation

Keywords

  • Biosorption mechanism
  • Cadmium removal
  • Equilibrium and kinetic
  • Okara waste biosorbent