Alleviation of Cd phytotoxicity and enhancement of rape seedling growth by plant growth–promoting bacterium Enterobacter sp. Zm-123

Abstract

The present study aims to investigate the impact of a metal-tolerant bacterium on metal detoxification and rape seedling growth promotion under Cd stress. The results showed that the isolated bacterium Enterobacter sp. Zm-123 has capability to resist Cd (200 mg/L), produce IAA (26.67 mg/L) and siderophores (82.34%), and solubilize phosphate (137.5 mg/L), etc. Zm-123 inoculation significantly enhanced the fresh weight of rape seedlings from 9.47 to 19.98% and the root length from 10.42 to 57.05% compared with non-inoculation group under different concentrations of Cd (0, 0.5, 1, 3, 5 mg/L) (p < 0.05). It also significantly increased the content of chlorophyll, soluble sugar, soluble protein, and proline (p < 0.05) in rape seedlings. Moreover, a significant elevation in catalase (CAT) and peroxidase (POD) activities and a significant reduction in malondialdehyde (MDA), electrolyte leakage (EL), and Cd content in rape seedlings were detected owing to Zm-123 inoculation (p < 0.05). The combined results imply that strain Zm-123 can alleviate the Cd phytotoxicity and promote the rape seedling growth by improving the physiological activity and antioxidant level, which can be potentially applied to protect plants from Cd toxicity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abd El-Azeem SAM, Elwan MW, Sung JK, Ok YS (2012) Alleviation of salt stress in eggplant (Solanum melongena L.) by plant-growth-promoting rhizobacteria. Commun Soil Sci Plan 43(9):1303–1315. https://doi.org/10.1080/00103624.2012.666305

    CAS  Article  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. In Methods in enzymology 105:121-126 academic press. https://doi.org/10.1016/S0076-6879(84)05016-3

  3. Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171. https://doi.org/10.1016/j.ecoenv.2013.04.013

    CAS  Article  Google Scholar 

  4. Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35(2):303–315. https://doi.org/10.1007/s00344-015-9534-5

    CAS  Article  Google Scholar 

  5. Andresen E, Küpper H (2013) Cadmium toxicity in plants. Met Ions Life Sci 11:395–413. https://doi.org/10.1007/978-94-007-5179-8_13

    CAS  Article  Google Scholar 

  6. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(suppl_1):5–16. https://doi.org/10.1093/jac/dkf083

    CAS  Article  Google Scholar 

  7. Baldantoni D, Morra L, Zaccardelli M, Alfani A (2016) Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol Environ Saf 123:89–94. https://doi.org/10.1016/j.ecoenv.2015.05.019

    CAS  Article  Google Scholar 

  8. Bates LS, Waldren RP, Teare ID, 1973. Rapid determination of free proline for water-stress studies. Plant soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  10. Braud A, Jez’equel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286. https://doi.org/10.1016/j.chemosphere.2008.09.013

    CAS  Article  Google Scholar 

  11. Chatterjee S, Mukherjee A, Sarkar A, Roy P (2012) Bioremediation of lead by lead-resistant microorganisms, isolated from industrial sample. Adv Biosci Biotechnol 3(03):290–295. https://doi.org/10.4236/abb.2012.33041

    CAS  Article  Google Scholar 

  12. Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, Yan C (2017) Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicol Environ Saf 139:272–279. https://doi.org/10.1016/j.ecoenv.2017.01.017

    CAS  Article  Google Scholar 

  13. Dai M, Liu W, Hong H, Lu H, Liu J, Jia H, Yan C (2018) Exogenous phosphorus enhances cadmium tolerance by affecting cell wall polysaccharides in two mangrove seedlings Avicennia marina (Forsk.) Vierh and Kandelia obovata (S., L.) Yong differing in cadmium accumulation. Mar Pollut Bull 126:86–92. https://doi.org/10.1016/j.marpolbul.2017.10.083

    CAS  Article  Google Scholar 

  14. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84. https://doi.org/10.1016/j.soilbio.2007.06.024

    CAS  Article  Google Scholar 

  15. Demiral T, Ismail T (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53(3):247–257. https://doi.org/10.1016/j.envexpbot.2004.03.017

    CAS  Article  Google Scholar 

  16. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162. https://doi.org/10.1016/j.soilbio.2008.10.010

    CAS  Article  Google Scholar 

  17. El-Nahrawy S, Elhawat N, Alshaal T (2019) Biochemical traits of Bacillus subtilis MF497446: its implications on the development of cowpea under cadmium stress and ensuring food safety. Ecotox Environ Safe 180:384–395. https://doi.org/10.1016/j.ecoenv.2019.04.088

    CAS  Article  Google Scholar 

  18. Fan SK, Fang XZ, Guan MY, Ye YQ, Lin XY, Du ST, Jin CW (2014) Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci 5:721. https://doi.org/10.3389/fpls.2014.00721

    Article  Google Scholar 

  19. Fang XZ, Tian WH, Liu XX, Lin XY, Jin CW, Zheng SJ (2016) Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytol 211(1):149–158. https://doi.org/10.1111/nph.13892

    CAS  Article  Google Scholar 

  20. Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249. https://doi.org/10.1016/j.ecoenv.2013.07.006

    CAS  Article  Google Scholar 

  21. Fässler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907. https://doi.org/10.1016/j.chemosphere.2010.04.077

    CAS  Article  Google Scholar 

  22. Gaonkar T, Bhosle S (2013) Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93(9):1835–1843. https://doi.org/10.1016/j.chemosphere.2013.06.036

    CAS  Article  Google Scholar 

  23. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    CAS  Article  Google Scholar 

  24. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61(2):793–796. https://doi.org/10.0000/PMID16534942

    CAS  Article  Google Scholar 

  25. He XL, Fan SK, Zhu J, Guan MY, Liu XX, Zhang YS, Jin CW (2017) Iron supply prevents Cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and Cd uptake. Plant Soil 416(1–2):453–462. https://doi.org/10.1007/s11104-017-3232-y

    CAS  Article  Google Scholar 

  26. Jia H, Hou DY, O’Connor D, Pan SZ, Zhu J, Bolan NS, Mulder J (2020) Exogenous phosphorus treatment facilitates chelation-mediated cadmiumdetoxification in perennial ryegrass (Lolium perenne L.). J Hazard Mater 389:121849. https://doi.org/10.1016/j.jhazmat.2019.121849

    CAS  Article  Google Scholar 

  27. Jin CW, Liu Y, Mao QQ, Wang Q, Du ST (2013) Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.). Food Chem 138(4):2188–2194. https://doi.org/10.1016/j.foodchem.2012.12.025

    CAS  Article  Google Scholar 

  28. John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270. https://doi.org/10.17221/2787-PSE

    CAS  Article  Google Scholar 

  29. Khan AR, Ullah I, Khan AL, Hong SJ, Waqas M, Park GS, Kwak Y, Choi J, Jung BK, Park M, Shin JH (2014) Phytostabilization and physicochemical responses of Korean ecotype Solanum nigrum L. to cadmium contamination. Water Air Soil Pollut 225:2147. https://doi.org/10.1007/s11270-014-2147-y

    CAS  Article  Google Scholar 

  30. Kumar S, Tripathi VR, Vikram S, Kumar B, Garg SK (2017) Characterization of mar and heavy metal-tolerant E. coli o157:h7 in water sources: a suggestion for behavioral intervention. Environ Dev Sustain 20(5):1–15. https://doi.org/10.1007/s10668-017-9998-5

    Article  Google Scholar 

  31. Kumari S, Khan A, Singh P, Dwivedi SK, Ojha KK, Srivastava A (2019) Mitigation of As toxicity in wheat by exogenous application of hydroxamate siderophore of Aspergillus origin 41(7):107 https://doi.org/10.1007/s11738-019-2902-1

  32. Liu C, Huang J, Leng BF, Feng ZC, Li JP (2017) Current situation,development difficulties and suggestions of Chinese rape industry. Journal of China Agricultural University 12:203–210. (in Chinese). https://doi.org/10.11841/j.issn.1007-4333.2017.12.27

  33. Liu JL, Tang L, Gao H, Zhang M, Guo CH (2018) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. Journal of the Science of Food & Agriculture 99(1):281–289. https://doi.org/10.1002/jsfa.9185

    CAS  Article  Google Scholar 

  34. Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW (2012) Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J Exp Bot 63(8):3127–3136. https://doi.org/10.1093/jxb/ers036

    CAS  Article  Google Scholar 

  35. Madhaiyan M, Poonguzhali S, Lee J, Saravanan V, Lee K, Santhanakrishnan P (2010) Enterobacter arachidis sp. nov., a plant growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. Int J Syst Evol Microbiol 60:1559–1564. https://doi.org/10.1099/ijs.0.013664-0

    CAS  Article  Google Scholar 

  36. Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574. https://doi.org/10.1016/j.jhazmat.2010.11.037

    CAS  Article  Google Scholar 

  37. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17. https://doi.org/10.1007/s12275-013-2330-7

    CAS  Article  Google Scholar 

  38. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002

    CAS  Article  Google Scholar 

  39. Piotrowska-Seget Z, Cycon M, Kozdroj J (2005) Metal tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246. https://doi.org/10.1016/j.apsoil.2004.08.001

    Article  Google Scholar 

  40. Płociniczak T, Sinkkonen A, Romantschuk M, Piotrowska-Seget Z (2013) Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl Soil Ecol 63:1–7. https://doi.org/10.1016/j.apsoil.2012.09.009

    Article  Google Scholar 

  41. Podazza G, Arias M, Prado FE (2012) Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. J Hazard Mater 215–216:83–89. https://doi.org/10.1016/j.jhazmat.2012.02.031

    CAS  Article  Google Scholar 

  42. Pramanik K, Ghosh PK, Ghosh A, Sarkar A, Maiti TK (2016) Characterization of PGP traits of a hexavalent chromium resistant Raoultella sp. isolated from the rice field near industrial sewage of Burdwan District, WB, India. Soil. Sediment. Contam 25(3):313–331. https://doi.org/10.1080/15320383.2016.1137861

    CAS  Article  Google Scholar 

  43. Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK (2017) Characterization of cadmium-resistant klebsiella pneumoniae mcc 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res 24(31):24419–24437. https://doi.org/10.1007/s11356-017-0033-z

    CAS  Article  Google Scholar 

  44. Pramanik K, Mitra S, Sarkar A, Maiti TK (2018) Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater 351:317–329. https://doi.org/10.1016/j.jhazmat.2018.03.009

    CAS  Article  Google Scholar 

  45. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    CAS  Article  Google Scholar 

  46. Ran JK, Zheng W, Wang HB, Wang HJ, Li QC (2020) Indole-3-acetic acid promotes cadmium (Cd) accumulation in a Cd hyperaccumulator and a non-hyperaccumulator by different physiological 191:110213 https://doi.org/10.1016/j.ecoenv.2020.110213

  47. Rizvi A, Ahmed B, Zaidi A, Khan MS (2019) Heavy metal mediated phytotoxic impact on winter wheat: oxidative stress and microbial management of toxicity by Bacillus subtilis BM2. RSC advances 9. https://doi.org/10.1039/c9ra00333a

  48. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 387:995–1014. https://doi.org/10.1590/S0100-879X2005000700003

    Article  Google Scholar 

  49. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    CAS  Article  Google Scholar 

  50. Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241. https://doi.org/10.1007/398_2016_8

  51. Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium, enterobacter ludwigii, cdp-14 on growth, biochemical parameters and zinc uptake in wheat ( triticum aestivum, l.) plant. Ecol Eng 116:163–173. https://doi.org/10.1016/j.ecoleng.2017.12.033

    Article  Google Scholar 

  52. Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60. https://doi.org/10.1007/s00284-007-9038-z

    CAS  Article  Google Scholar 

  53. Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 371:1–13. https://doi.org/10.3906/bot-1112-16

    CAS  Article  Google Scholar 

  54. Ullah I, Khan AR, Park GS, Lim JH, Waqas M, Lee IJ, Shin JH (2013) Analysisof phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci Biotechnol 22:25–31. https://doi.org/10.1007/s10068-013-0044-6

    CAS  Article  Google Scholar 

  55. Ullaha I, Al-Johnya BO, Al-Ghamdia KMS, Al-Zahranib HAA, Anwara Y, Firoza A, Al-Kenania N, Almatry MAA (2019) Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synthesisby sodA gene. Ecotoxicol Environ Saf 174:197–207. https://doi.org/10.1016/j.ecoenv.2019.02.074

    CAS  Article  Google Scholar 

  56. Vijayaragavan M, Prabhahar C, Sureshkumar J, Natarajan A, Vijayarengan P, Sharavanan S (2011) Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. International multidisciplinary research journal 1(5)

  57. Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310(1–2):137–149. https://doi.org/10.1007/s11104-008-9641-1

    CAS  Article  Google Scholar 

  58. Wang H, Wang T, Ahmad I (2015) Involvement of phosphate supplies in different transcriptional regulation pathway of Oryza sativa L.’s antioxidative system in response to arsenite and cadmium stress. Ecotoxicology 24:1259–1268. https://doi.org/10.1007/s10646-015-1496-7

    CAS  Article  Google Scholar 

  59. Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, Liu X (2012) Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol 196:125–138. https://doi.org/10.1111/j.1469-8137.2012.04236.x

    CAS  Article  Google Scholar 

  60. Xu Q, Pan W, Zhang R, Lu Q, Xue W, Wu C, Du S (2018) Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces Irt1-mediated cadmium uptake of roots. J Agric Food Chem 66(20):5229–5236. https://doi.org/10.1021/acs.jafc.8b00598

    CAS  Article  Google Scholar 

  61. Yu ZG, Zhou QX (2009) Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus. J Hazard Mater 167:38–43. https://doi.org/10.1016/j.jhazmat.2008.12.082

    CAS  Article  Google Scholar 

  62. Yu SM, Liang JS, Bai X, Dong LY, Liu XS, Wei YN, Qu JJ (2018) Inoculation of plant growth-promoting bacteria Bacillus sp. YM-1 alleviates the toxicity of Pb to pakchoi. Environ Sci Pollut Res 25(28):28216–28225. https://doi.org/10.1007/s11356-018-2802-8

    CAS  Article  Google Scholar 

  63. Yuan T, Gu J, Zhou H, Huang F, Liao B (2020) Translocation and accumulation of cadmium and lead in the tissues of 39 rape cultivars grown in a polluted farmland. Environ Sci Pollut Res 3:15888–15900. https://doi.org/10.1007/s11356-020-07697-5

    CAS  Article  Google Scholar 

  64. Zhang CY , He Q, Wang MH, Gao XZ, Chen JJ, Shen CW (2020) Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis) 190: 110090 https://doi.org/10.1016/j.ecoenv.2019.110090

  65. Zhou C, Zhu L, Ma Z, Wang J (2017) Bacillus amyloliquefaciens SAY09 increases cadmium resistance in plants by activation of auxin-mediated signaling pathways. Genes 8(7):173. https://doi.org/10.3390/genes8070173

    CAS  Article  Google Scholar 

Download references

Funding

This study was supported by the National Key Research Project of China (grant number: 2017YFD0801104)

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Juanjuan Qu or Yu Jin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Gangrong Shi

Electronic supplementary material

ESM 1

(DOC 5675 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Jin, Z., Zhang, X. et al. Alleviation of Cd phytotoxicity and enhancement of rape seedling growth by plant growth–promoting bacterium Enterobacter sp. Zm-123. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09558-7

Download citation

Keywords

  • Cadmium
  • Plant growth–promoting activity
  • Rape seedlings
  • Enterobacter sp. Zm-123