Removal of ochratoxin A from liquid media using novel low-cost biosorbents

Abstract

Ground shells of almonds (ALM), hazelnuts (HAZ), walnuts (WAL), and chestnuts (CHE), coconut fiber (COC), spent coffee grounds (COF), and clementine peel (CLE) were used to remove ochratoxin A (OTA) from both water and an ethanol/water mixture (14:86, v/v). Other very efficient adsorbents like wood biochar (BC) and hydrochar (HC) and a humic acid (HA) were also adopted as a comparison. In batch experiments, sorption of OTA from water followed the trend BC (100% removed) > HA > CLE > COC > HC > COF > ALM > HAZ > CHE > WAL (8% removed), whereas sorption of OTA from ethanol/water mixture (14:86, v/v) onto only the raw materials was COC (54% removed) > CLE > HAZ > ALM > COF > CHE > WAL (0.4% removed). The desorption of the toxin from all materials in water was rather low. Afterwards, sorption kinetics and isotherms of OTA onto CLE, COC, and COF were performed. The three materials adsorbed OTA in about 2 h according to a pseudo-second-order kinetic model, thus indicating the occurrence of a chemisorption mechanism. Equilibrium sorption data of OTA onto CLE followed preferentially the Freundlich model, whereas those on COC and COF fitted well both Freundlich and Langmuir isotherms (r > 0.996). The values of Freundlich sorption constants, KFads, for CLE, COC, and COF were 313, 202, and 98 L kg−1, respectively. OTA desorption from each of the three materials showed hysteretic effects. Overall findings of this work suggest that raw plant wastes could be effectively used as biosorbents to abate the level of OTA in liquid media.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amézqueta S, González-Peñas E, Murillo-Arbizu M, López de Cerain A (2009) Ochratoxin A decontamination: a review. Food Control 20:326–333. https://doi.org/10.1016/j.foodcont.2008.05.017

    CAS  Article  Google Scholar 

  2. Appell M, Jackson MA (2012) Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin–polyurethane polymer. Toxins 4:98–109. https://doi.org/10.3390/toxins4020098

    CAS  Article  Google Scholar 

  3. Barriuso E, Laird DA, Koskinen WC, Dowdy RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am J 58:1632–1638. https://doi.org/10.2136/sssaj1994.03615995005800060008x

    CAS  Article  Google Scholar 

  4. Bayman P, Baker JL (2006) Ochratoxins: a global perspective. Mycopathologia 162:215–223. https://doi.org/10.1007/s11046-006-0055-4

    CAS  Article  Google Scholar 

  5. Castellana G, Loffredo E (2014) Simultaneous removal of endocrine disruptors from a wastewater using white rot fungi and various adsorbents. Water Air Soil Poll 225:1872. https://doi.org/10.1007/s11270-014-1872-6

    CAS  Article  Google Scholar 

  6. Castellari M, Versani A, Fabiani A, Parpinello GP, Galassi S (2001) Removal of ochratoxin A in red wines by means of adsorption treatments with commercial fining agents. J Agr Food Chem 49:3917–3921. https://doi.org/10.1021/jf010137o

    CAS  Article  Google Scholar 

  7. Cervera-Mata A, Pastoriza S, Rufián-Henares JA, Párraga J, Martín-García JM, Delgado G (2018) Impact of spent coffee grounds as organic amendment on soil fertility and lettuce growth in two Mediterranean agricultural soils. Arch Agron Soil Sci 64:790–804. https://doi.org/10.1080/03650340.2017.1387651

    CAS  Article  Google Scholar 

  8. Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (2001) Humic substances and chemical contaminants. Soil Sci Soc Am, Madison

    Google Scholar 

  9. Dakovic A, Tomasevic-Canovic M, Dondur V, Rottinghaus GE, Medakovic V, Zaric S (2005) Adsorption of mycotoxins by organozeolites. Colloid Surface B 46:20–25. https://doi.org/10.1016/j.colsurfb.2005.08.013

    CAS  Article  Google Scholar 

  10. European Commission, EC (2002) Reports on tasks for scientific cooperation. Assessments of dietary intake of ochratoxin A by the population of EU member states. Directorate—General Health and Consumer Protection. https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue_ochratoxin_task_3-2-7_en.pdf. Accessed 30 Jan 2020

  11. European Commission Regulation, EC, N. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN. Accessed 30 Jan 2020

  12. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    CAS  Article  Google Scholar 

  13. Gupta VK, Ribeiro Carrott PJM, Ribeiro Carrot MML, Suhas (2009) Low cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Env Sci Tec 39:783–842. https://doi.org/10.1080/10643380801977610

    Article  Google Scholar 

  14. Han L, Ro KS, Sun K, Sun H, Wang Z, Libra JA, Xing B (2016) New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environ Sci Technol 50:13274–13282. https://doi.org/10.1021/acs.est.6b02401

    CAS  Article  Google Scholar 

  15. Ho YS (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119–125. https://doi.org/10.1016/j.watres.2005.10.040

    CAS  Article  Google Scholar 

  16. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    CAS  Article  Google Scholar 

  17. Jamal Y, Mehran V, Firouzeh N, Javad M, Ehsan M, Roya K, Mir-Jamal H (2018) Occurrence of ochratoxin A in grape juice of Iran. Iran J Pharm Res 17(1):140–146. https://doi.org/10.22037/ijpr.2018.2158

    Article  Google Scholar 

  18. Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater B137:1538–1544. https://doi.org/10.1016/j.jhazmat.2006.04.036

    CAS  Article  Google Scholar 

  19. Kurtbay HM, Bekçi ZB, Merdivan M, Yurdakoç K (2008) Reduction of ochratoxin A levels in red wine by bentonite, modified bentonites and chitosan. J Agr Food Chem 56:2541–2545. https://doi.org/10.1021/jf073419i

    CAS  Article  Google Scholar 

  20. Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  21. Loffredo E, Taskin E (2017) Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials. Environ Sci Pollut Res 24:19159–19166. https://doi.org/10.1007/s11356-017-9595-z

    CAS  Article  Google Scholar 

  22. Loffredo E, Castellana G, Taskin E (2016) A two-step approach to eliminate pesticides and estrogens from a wastewater and reduce its phytotoxicity: adsorption onto plant-derived materials and fungal degradation. Water Air Soil Poll 227:188. https://doi.org/10.1007/s11270-016-2883-2

    CAS  Article  Google Scholar 

  23. Magan N, Olsen M (2004) Mycotoxins in food. Woodhead Publishing Ltd, Cambridge and CRC Press LLC, New York.

  24. Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J (2016) Ochratoxin A: 50 years of research. Toxins 8:191. https://doi.org/10.3390/toxins8070191

    CAS  Article  Google Scholar 

  25. Massoud R, Cruz A, Darani KK (2018) Ochratoxin A: from safety aspects to prevention and remediation strategies. Curr Nutr Food Sci 14:11–16. https://doi.org/10.2174/1573401313666170517165500

    CAS  Article  Google Scholar 

  26. Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Biores Technol 160:191–202. https://doi.org/10.1016/j.biortech.2014.01.120

    CAS  Article  Google Scholar 

  27. Murthy PS, Naidu MM (2012) Sustainable management of coffee industry by-products and value addition—a review. Resour Conserv and Recycl 66:45–58. https://doi.org/10.1016/j.resconrec.2012.06.005

    Article  Google Scholar 

  28. Pietri A, Bertuzzi T, Pallaroni L, Piva G (2001) Occurrence of ochratoxin A in Italian wines. Food Addit Contam 18(7):647–654. https://doi.org/10.1080/02652030119480

    CAS  Article  Google Scholar 

  29. Piotrowska M (2014) The adsorption of ochratoxin A by Lactobacillus species. Toxins 6:2826–2839. https://doi.org/10.3390/toxins6092826

    CAS  Article  Google Scholar 

  30. PubChem open chemistry database at the National Institutes of Health (NIH), U.S. National Library of Medicine. (2019) https://pubchem.ncbi.nlm.nih.gov/compound/442530. Accessed 30 Jan 2020

  31. Quintela S, Villáran MC, López de Armentia I, Elejade E (2012) Ochratoxin A in Spanish exportation wine market. Food Control 25:501–504. https://doi.org/10.1016/j.foodcont.2011.11.023

    CAS  Article  Google Scholar 

  32. Quintela S, Villáran C, López de Armentia I, Elejade E (2013) Ochratoxin A removal in wine: a review. Food Control 30:439–445. https://doi.org/10.1016/j.foodcont.2012.08.014

    CAS  Article  Google Scholar 

  33. Ringot D, Lerzy B, Chaplain K, Bonhoure J, Auclair E, Larondelle Y (2007) In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresour Technol 98(9):1812–1821. https://doi.org/10.1016/j.biortech.2006.06.015

    CAS  Article  Google Scholar 

  34. Shan Y (2016) Functional components of citrus peel. In: Shan Y (ed) Comprehensive utilization of citrus by-products. Elsevier, Amsterdam, pp 1–13

    Google Scholar 

  35. Shar ZH, Fletcher MT, Sumbal GA, Sherazi STH, Giles C, Bhanger MI, Nizamani SM (2016) Banana peel: an effective biosorbent for aflatoxins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33(5):849–860. https://doi.org/10.1080/19440049.2016.1175155

    CAS  Article  Google Scholar 

  36. Shephard GS, Fabiani A, Stockenstrom S, Mshicileli N, Sewram V (2003) Quantitation in ochratoxin A in South African wines. J Agr Food Chem 51:1102–1106. https://doi.org/10.1021/jf0259866

    CAS  Article  Google Scholar 

  37. Studer-Rohr I, Dietrich DR, Schlatter J, Schlatter C (1995) The occurrence of ochratoxin A in coffee. Food and chemical toxicology 33(5):341–355. https://doi.org/10.1016/0278-6915(94)00150-M

    CAS  Article  Google Scholar 

  38. Taskin E, de Castro BC, Allegretta I, Terzano R, Rosa AH, Loffredo E (2019) Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications. Chemosphere 233:422–430. https://doi.org/10.1016/j.chemosphere.2019.05.204

    CAS  Article  Google Scholar 

  39. Tomasevic-Canovic M, Dakovic G, Rottinghaus A, Matijasevic S, Duricic M (2003) Surfactant modified zeolites—new efficient adsorbents for mycotoxins. Microporous Mesoporous Mater 61:173–180. https://doi.org/10.1016/S1387-1811(03)00365-2

    CAS  Article  Google Scholar 

  40. Var I, Kabak B, Erginkaya Z (2008) Reduction in ochratoxin A levels in white wine, following treatment with activated carbon and sodium bentonite. Food Control 19:592–598. https://doi.org/10.1016/j.foodcont.2007.06.013

    CAS  Article  Google Scholar 

  41. Zohri AA, Saber M (1993) Filamentous fungi and mycotoxin detected in coconut. Zentralbl Mikrobiol 148(5):325–332. https://doi.org/10.1016/S0232-4393(11)80121-6

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was founded by University of Bari Aldo Moro, Italy. The authors thank Mr. Adriano Boghetich of DICATECh, Politecnico di Bari for performing SEM analysis. The authors are grateful to the anonymous reviewers for their valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Loffredo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loffredo, E., Scarcia, Y. & Parlavecchia, M. Removal of ochratoxin A from liquid media using novel low-cost biosorbents. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09544-z

Download citation

Keywords

  • Ochratoxin A
  • Biosorbent
  • Toxin removal
  • Sorption kinetics
  • Sorption isotherm
  • Desorption