Dithiothreitol-based oxidative potential for airborne particulate matter: an estimation of the associated uncertainty

Abstract

Oxidative stress is considered as one of the main mechanisms by which airborne particles produce adverse health effects. Several methods to estimate the oxidative potential (OP) of particulate matter (PM) have been proposed. Among them, the dithiothreitol (DTT) assay has gained popularity due to its simplicity and overall low implementation cost. Usually, the estimations of OPDTT are based on n-replicates of a set of samples and their associated standard deviation. However, interlaboratory comparisons of OPDTT can be difficult and lead to misinterpretations. This work presents an estimation of the total uncertainty for the OPDTT measurement of PM10 and PM2.5 samples collected in Santiago (Chile), based on recommendations by the Joint Committee for Guides in Metrology and Eurachem. The expanded uncertainty expressed as a percentage of the mass-normalized OPDTT measurements was 18.0% and 16.3% for PM10 and PM2.5 samples respectively. The dominating contributor to the total uncertainty was identified (i.e., DTT consumption rate, related to the regression and repeatability of experimental data), while the volumetric operations (i.e., pipettes) were also important. The results showed that, although the OP measured following the DTT assay has been successfully used to estimate the potential health impacts of airborne PM, uncertainty estimations must be considered before interpreting the results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175. https://doi.org/10.1007/s13181-011-0203-1

    CAS  Article  Google Scholar 

  2. Araujo JA (2011) Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Heal 4(1):79–93. https://doi.org/10.1007/s11869-010-0101-8

    Article  Google Scholar 

  3. Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM et al (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential - a workshop report and consensus statement. Inhal Toxicol 20(1):75–99. https://doi.org/10.1080/08958370701665517

    CAS  Article  Google Scholar 

  4. Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, Abrams JY et al (2019) Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition , sources, and health effects. Review-article. Environ Sci Technol 53:4003–4019. https://doi.org/10.1021/acs.est.8b03430

    CAS  Article  Google Scholar 

  5. Berg KE, Clark KM, Li X, Carter EM, Volckens J, Henry CS (2020) High-throughput, semi-automated dithiothreitol (DTT) assays for oxidative potential of fine particulate matter. Atmos Environ 222(October 2019):117132. https://doi.org/10.1016/j.atmosenv.2019.117132

    CAS  Article  Google Scholar 

  6. Borm PJA, Kelly F, Künzli N, Schins RPF, Donaldson K (2007) Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. Occup Environ Med 64(2):73–74. https://doi.org/10.1136/oem.2006.029090

    Article  Google Scholar 

  7. Calas A, Uzu G, Besombes JL, Martins JMF, Redaelli M, Weber S, Charron A, Albinet A, Chevrier F, Brulfert G, Mesbah B, Favez O, Jaffrezo J-L (2019) Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM), for seven urban French sites. Atmosphere 10(11):1–20. https://doi.org/10.3390/atmos10110698

    CAS  Article  Google Scholar 

  8. Charrier JG, Anastasio C (2012) On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos Chem Phys 12(5):11317–11350. https://doi.org/10.5194/acpd-12-11317-2012

    CAS  Article  Google Scholar 

  9. Charrier JG, Richards-Henderson NK, Bein KJ, McFall AS, Wexler AS, Anastasio C (2015) Oxidant production from source-oriented particulate matter - part 1: oxidative potential using the dithiothreitol (DTT) assay. Atmos Chem Phys 15(5):2327–2340. https://doi.org/10.5194/acp-15-2327-2015

    CAS  Article  Google Scholar 

  10. Charrier JG, McFall AS, Vu KK-T, Baroi J, Olea C, Hasson A, Anastasio C (2016) A bias in the mass-normalized dtt response - an effect of non-linear concentration-response curves for copper and manganese. Atmos Environ 144(November):325–334. https://doi.org/10.1016/j.atmosenv.2016.08.071

    CAS  Article  Google Scholar 

  11. Cheng W-Y, Currier J, Bromberg PA, Silbajoris R, Simmons SO, Samet JM (2012) Linking oxidative events to inflammatory and adaptive gene expression induced by exposure to an organic particulate matter component. Environ Health Perspect 120(2):267–274. https://doi.org/10.1289/ehp.1104055

    CAS  Article  Google Scholar 

  12. Cheung KL, Ntziachristos L, Tzamkiozis T, Schauer JJ, Samaras Z, Moore KF, Sioutas C (2010) Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci Technol 44(7):500–513. https://doi.org/10.1080/02786821003758294

    CAS  Article  Google Scholar 

  13. Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles basin. Environ Res 99(1):40–47. https://doi.org/10.1016/j.envres.2005.01.003

    CAS  Article  Google Scholar 

  14. Delaval M, Wohlleben W, Landsiedel R, Baeza-Squiban A, Boland S (2017) Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch Toxicol 91(1):163–177. https://doi.org/10.1007/s00204-016-1701-3

    CAS  Article  Google Scholar 

  15. Donaldson K, Stone V, Seaton A, MacNee W, Donaldson K, Stone V, Seaton A, MacNee W (2001) Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109:523–527. https://doi.org/10.1289/ehp.01109s4523

    CAS  Article  Google Scholar 

  16. Eurachem (2000). Quantifying uncertainty in analytical measurement. 2nd edition: 126. 0 948926 15 5. https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf. Accessed 20 October 2018

  17. Fang T, Verma V, Guo H, King LE, Edgerton ES, Weber RJ (2015) A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the southeastern center for air pollution and epidemiology (SCAPE). Atmos Meas Tech 8(1):471–482. https://doi.org/10.5194/amt-8-471-2015

    CAS  Article  Google Scholar 

  18. Fang T, Verma V, Bates JT, Abrams J, Klein M, Strickland MJ, Sarnat SE et al (2016) Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos Chem Phys 16(6):3865–3879. https://doi.org/10.5194/acp-16-3865-2016

    CAS  Article  Google Scholar 

  19. Gao D, Fang T, Verma V, Zeng L, Weber RJ (2017) A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmos Meas Tech 10(8):2821–2835. https://doi.org/10.5194/amt-10-2821-2017

    CAS  Article  Google Scholar 

  20. Ghio AJ, Carraway MS, Madden MC (2012) Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Heal Part B 15(1):1–21. https://doi.org/10.1080/10937404.2012.632359

    CAS  Article  Google Scholar 

  21. Gouveia N, Junger WL, Romieu I, Cifuentes LA, de Leon AP, Vera J, Strappa V et al (2018) Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities. Environ Pollut 232(January):385–391. https://doi.org/10.1016/J.ENVPOL.2017.08.125

    CAS  Article  Google Scholar 

  22. Hedayat F, Stevanovic S, Miljevic B, Bottle S, Ristovsk ZD (2015) Review - evaluating the molecular assays for measuring the oxidative potential of particulate matter. Chem Ind Chem Eng Q 21(1):201–210. https://doi.org/10.2298/CICEQ140228031H

    CAS  Article  Google Scholar 

  23. Holmen BA, Rukavina B, Kasumba J, Fukagawa NK (2017) Reactive oxidative species and speciated particulate light-duty engine emissions from diesel and biodiesel fuel blends. Energy Fuel 31(8):8171–8180. https://doi.org/10.1021/acs.energyfuels.7b00698

    CAS  Article  Google Scholar 

  24. JCGM100:2008 (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. International Organization for Standardization Geneva ISBN 50(September):134–978. https://doi.org/10.1373/clinchem.2003.030528

    CAS  Article  Google Scholar 

  25. Jedynska A, Hoek G, Wang M, Yang A, Eeftens M, Cyrys J, Keuken M, Ampe C, Beelen R, Cesaroni G, Forastiere F, Cirach M, de Hoogh K, de Nazelle A, Nystad W, Akhlaghi HM, Declercq C, Stempfelet M, Eriksen KT, Dimakopoulou K, Lanki T, Meliefste K, Nieuwenhuijsen M, Yli-Tuomi T, Raaschou-Nielsen O, Janssen NAH, Brunekreef B, Kooter IM (2017) Spatial variations and development of land use regression models of oxidative potential in ten european study areas. Atmos Environ 150:24–32. https://doi.org/10.1016/j.atmosenv.2016.11.029

    CAS  Article  Google Scholar 

  26. Jiang H, Sabbir Ahmed CM, Canchola A, Chen JY, Lin YH (2019) Use of dithiothreitol assay to evaluate the oxidative potential of atmospheric aerosols. Atmosphere 10(10):1–21. https://doi.org/10.3390/atmos10100571

    CAS  Article  Google Scholar 

  27. Kim K-H, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143. https://doi.org/10.1016/j.envint.2014.10.005

    CAS  Article  Google Scholar 

  28. Koehler KA, Shapiro J, Sameenoi Y, Henry C, Volckens J (2014) Laboratory evaluation of a microfluidic electrochemical sensor for aerosol oxidative load. Aerosol Sci Technol 48(5):489–497. https://doi.org/10.1080/02786826.2014.891722

    CAS  Article  Google Scholar 

  29. Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15:483–489. https://doi.org/10.1021/tx0100993

    CAS  Article  Google Scholar 

  30. Leiva G, Manuel A, Gonzales B, Vargas D, Toro R, Raul GE, Morales S (2013) Estimating the uncertainty in the atmospheric ammonia concentration in an urban area by Ogawa passive samplers. Microchem J 110(September):340–349. https://doi.org/10.1016/J.MICROC.2013.05.004

    Article  Google Scholar 

  31. Li J, Chen H, Li X, Wang M, Zhang X, Cao J, Shen F, Wu Y, Xu S, Fan H, da G, Huang R-j, Wang J, Chan CK, de Jesus AL, Morawska L, Yao M (2019) Differing toxicity of ambient particulate matter (PM) in global cities. Atmos Environ 212(October 2018):305–315. https://doi.org/10.1016/j.atmosenv.2019.05.048

    CAS  Article  Google Scholar 

  32. Li Q, Wyatt A, Kamens RM (2009) Oxidant generation and toxicity enhancement of aged-diesel exhaust. Atmos Environ 43(5):1037–1042. https://doi.org/10.1016/j.atmosenv.2008.11.018

    CAS  Article  Google Scholar 

  33. Lin M, Yu JZ (2019) Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples. Neotrop Entomol 251:938–944. https://doi.org/10.1016/j.envpol.2019.05.074

    CAS  Article  Google Scholar 

  34. McWhinney RD, Zhou S, Abbatt JPD (2013) Naphthalene SOA: redox activity and naphthoquinone gas-particle partitioning. Atmos Chem Phys 13(19):9731–9744. https://doi.org/10.5194/acp-13-9731-2013

    CAS  Article  Google Scholar 

  35. Molina C, Toro AR, Manzano C, Canepari S, Massimi L, Leiva-Gizman MA (2020) Airborne aerosols and human health: Leapfrogging from mass concentration to oxidative potential. Environ Health Perspect, summited

  36. Øvrevik J, Refsnes M, Låg M, Holme J, Schwarze P (2015) Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 5(3):1399–1440. https://doi.org/10.3390/biom5031399

    CAS  Article  Google Scholar 

  37. Pal AK, Hsieh S-F, Khatri M, Isaacs JA, Demokritou P, Gaines P, Schmidt DF, Rogers EJ, Bello D (2014) Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH. J Nanopart Res 16(2):20. https://doi.org/10.1007/s11051-013-2167-3

    CAS  Article  Google Scholar 

  38. Piacentini D, Falasca G, Canepari S, Massimi L (2019) Potential of PM-selected components to induce oxidative stress and root system alteration in a plant model organism. Environ Int 132(August):105094. https://doi.org/10.1016/j.envint.2019.105094

    CAS  Article  Google Scholar 

  39. Riu J, Xavier Rius F, Maroto A, Boque R (1999) Evaluating uncertainty in routine analysis. Trends Anal Chem 18:577–584. https://doi.org/10.1016/S0165-9936(99)00151-X

    Article  Google Scholar 

  40. Sauvain J-J, Rossi MJ, Riediker M (2013) Comparison of three acellular tests for assessing the oxidation potential of nanomaterials. Aerosol Sci Technol 47(2):218–227. https://doi.org/10.1080/02786826.2012.742951

    CAS  Article  Google Scholar 

  41. Schins RPF, Lightbody JH, Borm PJA, Shi TM, Donaldson K, Stone V (2004) Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol Appl Pharmacol 195(1):1–11. https://doi.org/10.1016/j.taap.2003.10.002

    CAS  Article  Google Scholar 

  42. Shirmohammadi F, Wang D, Hasheminassab S, Verma V, Schauer JJ, Shafer MM, Sioutas C (2017) Oxidative potential of on-road fine particulate matter (PM2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies. Atmos. Environ. 148(January):102–114. https://doi.org/10.1016/j.atmosenv.2016.10.042

    CAS  Article  Google Scholar 

  43. Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2(1):21. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  44. Taverniers I, Van Bockstaele E, De Loose M (2004) Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. Trends Anal Chem 23(7):480–490. https://doi.org/10.1016/S0165-9936(04)00733-2

    CAS  Article  Google Scholar 

  45. Tuet WY, Fok S, Verma V, Tagle Rodriguez MS, Grosberg A, Champion JA, Ng NL (2016) Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition. Atmos Environ 144(Novermber):335–344. https://doi.org/10.1016/j.atmosenv.2016.09.005

    CAS  Article  Google Scholar 

  46. Valavanidis A, Fiotakis K, Bakeas E, Vlahogianni T (2005) Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep 10(1):37–51. https://doi.org/10.1179/135100005X21606

    CAS  Article  Google Scholar 

  47. Valcárcel M, Ríos A (1998) A view of uncertainty at the bench analytical level. Accred Qual Assur 3:14–19. https://doi.org/10.1007/s007690050176

    Article  Google Scholar 

  48. Wang J, Lin X, Lu L, Wu Y, Zhang H, Lv Q, Liu W, Zhang Y, Zhuang S (2019) Temporal variation of oxidative potential of water soluble components of ambient PM 2.5 measured by dithiothreitol (DTT) assay. Sci Total Enviro 649:969–978. https://doi.org/10.1016/j.scitotenv.2018.08.375

    CAS  Article  Google Scholar 

  49. Wampfler B, Rösslein M (2009) Uncertainty due to volumetric operations is often underestimated. Talanta 78(1):113–119. https://doi.org/10.1016/j.talanta.2008.10.047

    CAS  Article  Google Scholar 

  50. Weber S, Uzu G, Calas A, Chevrier F, Besombes JL, Charron A, Salameh D, Ježek I, Moĉnik G, Jaffrezo JL (2018) An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmos Chem Phys 18(13):9617–9629. https://doi.org/10.5194/acp-18-9617-2018

    CAS  Article  Google Scholar 

Download references

Funding

This paper was financially supported by the National Commission for Scientific and Technological Research CONICYT/FONDECYT through grant no.1160617 and grant no.1118051. CM was partial supported by Programa Nacional de Becas de Postgrado 2018 no. 21181015.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Leiva-Guzmán.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The funders had no role in the study design, data collection, analysis, or manuscript preparation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors, in special MALG, dedicate this work in loving memory of wonderful father Manuel de la Cruz Leiva Angulo (1927–2019). “Death is a stripping away of all that is not you. The secret of life is to die before you die and find that there is no death” (Eckhart Tolle, in “The Power of Now”).

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molina, C., Andrade, C., Manzano, C.A. et al. Dithiothreitol-based oxidative potential for airborne particulate matter: an estimation of the associated uncertainty. Environ Sci Pollut Res 27, 29672–29680 (2020). https://doi.org/10.1007/s11356-020-09508-3

Download citation

Keywords

  • Uncertainty estimation
  • Oxidative potential
  • DTT assay
  • PM10
  • PM2.5
  • Chile