Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress

Abstract

This research with a factorial arrangement was undertaken to investigate physiological responses of ajowan plants to foliar treatment of salicylic acid (1 mM) and nano-Fe2O3 (3 mM) under various salinity levels (0, 4, 8, 12 dS m−1 NaCl, respectively). Rising salinity enhanced sodium and endogenous SA contents, soluble sugars, protein, glycine betaine, proline, antioxidant enzymes activities, ROS generation, and lipid peroxidation, while reduced potassium and iron contents, membrane stability index, leaf water content, leaf pigments, root and shoot biomasses, and seed yield. Application of particularly SA and SA+nano-Fe2O3 alleviated salt toxicity via enhancing K+ uptake, K+/Na+ ratio, Fe content, endogenous level of SA, the activities of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase), and most of the osmolytes. These changes were resulted in improving membrane stability index, leaf water content, leaf pigments, root and shoot growth, and finally seed yield of plants under moderate and severe salinities. Therefore, these treatments can additively enhance salt tolerance and physiological performance of ajowan through increasing antioxidant capacity, osmolytes, and photosynthetic pigments.

.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CAT:

Catalase

Chl:

Chlorophyll

EC:

Electrical conductivity

FC:

Field capacity

FTIR:

Fourier transform infrared spectroscopy

GB:

Glycine betaine

LWC:

Leaf water content

MDA:

Malondialdehyde

MSI:

Membrane stability index

Nano-Fe2O3 :

Nano-iron oxide

NBT:

Nitro blue tetrazolium

NPs:

Nanoparticles

POX:

Peroxidase

PPO:

Polyphenol oxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SEM:

Scanning electronic microscopy

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TEM:

Transmission electron microscopy

References

  1. Abdelaal KA, EL-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish A (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy 10:26. https://doi.org/10.3390/agronomy10010026

    CAS  Article  Google Scholar 

  2. Al Mahmud J, Bhuyan MHMB, Anee TI, Nahar K, Fujita M, Hasanuzzaman M (2019) Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF (eds) Plant abiotic stress tolerance. Springer International Publishing, Switzerland, pp 221–257

    Google Scholar 

  3. Aliu S, Rusinovci I, Fetahu S, Gashi B, Simeonovska E, Rozman L (2015) The effect of salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta Agric Slov 105:85–94

    CAS  Google Scholar 

  4. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Google Scholar 

  5. Barhoumi L, Oukarroum A, Taher LB, Smiri LS, Abdelmelek H, Dewez D (2015) Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Arch Environ Contam Toxicol 68:510–520

    CAS  Google Scholar 

  6. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  7. Bozorgi HR (2012) Effects of foliar spraying with marine plant Ascophyllum nodosum extract and nano iron chelate fertilizer on fruit yield and several attributes of eggplant (Solanum melongena L.). ARPN J Agric Biol Sci 7:357–362

    Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  9. Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282

    CAS  Google Scholar 

  10. Brittenham GM (1994) New advances in iron metabolism, iron deficiency, and iron overload. Curr Opin Hematol 1:101–106

    CAS  Google Scholar 

  11. Carpenter AW, Worley BV, Slomberg DL, Schoenfisch MH (2012) Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromology 13:3334–3342

    CAS  Google Scholar 

  12. Chao YY, Chen CY, Huang WD, Ching CH (2010) Salicylic acid mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    CAS  Google Scholar 

  13. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    CAS  Google Scholar 

  14. Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simona M, Shen ZJ, Xiao Q, Chu CC, Peng XX, Zheng HL (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182

    CAS  Google Scholar 

  15. Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE (2012) Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth and division in Arabidopsis. Plant Physiol 160:332–348

    CAS  Google Scholar 

  16. Csiszar J, Horvath E, Vary Z, Galle A, Bela K, Brunner S, Tari L (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    CAS  Google Scholar 

  17. Dwivedi SN, Mishra RP, Alava S (2012) Phytochemistry: pharmacological studies and traditional benefits of Trachyspermum ammi (Linn.) Sprague. Int J Pharm Life Sci 3:1705–1709

    Google Scholar 

  18. Elansary HO, Szopa A, Kubica P, Ekiert H, Ali HM, Elshikh MS, Abdel-Salam EM, El-Esawi M, El-Ansary DO (2018) Bioactivities of traditional medicinal plants in Alexandria. Evid Based Complement Alternat Med 2018:1463579–1463513. https://doi.org/10.1155/2018/1463579

    Article  Google Scholar 

  19. El-Fouly MM, Abou El-Nour EAA, Abdel-Maguid AA (2004) Counteracting effect of foliar application of macronutrients on spinach beet (Beta vulgaris var. cycla) grown under NaCl salinity stress. Agric Cairo Univ 55:587–602

    Google Scholar 

  20. Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    CAS  Google Scholar 

  21. Farhangi-Abriz S, Torabian S (2017) Biochar increased plant growth-promoting hormones and helped to alleviate salt stress in common bean seedlings. J Plant Growth Regul 37:591–601

    Google Scholar 

  22. Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255:953–962

    CAS  Google Scholar 

  23. Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40:1376–1385

    CAS  Google Scholar 

  24. Fernandez V, Del-Rio V, Pumarino L, Igartua E, Abadia J, Abadia A (2008) Foliar fertilization of peach (Prunus persica L. Batsch) with different iron formulations: effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci Hortic 117:241–248

    CAS  Google Scholar 

  25. Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    CAS  Google Scholar 

  26. Gao FQ, Hong FS, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biol Trace Elem Res 111:239–253

    CAS  Google Scholar 

  27. Ghassemi-Golezani K, Farhangi-Abriz S (2018) Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicol Environ Saf 166:18–25

    CAS  Google Scholar 

  28. Ghassemi-Golezani K, Lotfi R (2015) The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russ J Plant Physiol 62:611–616

    CAS  Google Scholar 

  29. Ghassemi-Golezani K, Taifeh-Noori M, Oustan S, Moghaddam M, Seyyed-Rahmani S (2010) Oil and protein accumulation in soybean grains under salinity stress. Not Sci Biol 2:64–69

    CAS  Google Scholar 

  30. Ghassemi-Golezani K, Farhangi-Abriz S, Bandehagh A (2018) Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress. Acta Agric Slov 111:597–607

    Google Scholar 

  31. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    CAS  Google Scholar 

  32. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    CAS  Google Scholar 

  33. Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Google Scholar 

  34. Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, Vieira LGE (2014) Stress-induced D1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant 36:2309–2319

    CAS  Google Scholar 

  35. Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    CAS  Google Scholar 

  36. Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Google Scholar 

  37. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    CAS  Google Scholar 

  38. Hussain A, Ali S, Rizwan M, Rehman MZU, Qayyum MF, Wang H, Rinklebe J (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol Environ Saf 173:156–164

    CAS  Google Scholar 

  39. Iqbal M, Khan R, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mung bean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Google Scholar 

  40. Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65:2963–2979

    CAS  Google Scholar 

  41. Jamil M, Lee KJ, Kim JM, Kim HS, Rha ES (2007) Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci Agric 64:111–118

    CAS  Google Scholar 

  42. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    CAS  Google Scholar 

  43. Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    CAS  Google Scholar 

  44. Juan ME, Gonzalez-Pons E, Munuera T, Ballester J, Rodriguez-Gil JE, Planas JM (2005) Trans-resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats. J Nutr 135:757–760

    CAS  Google Scholar 

  45. Kaplan J, McVey Ward D, Crisp RJ, Philpott CC (2006) Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta 1763:646–651

    CAS  Google Scholar 

  46. Katerji N, Van Hoorn JW, Hamdy A, Mastrorilli M (2004) Comparison of corn yield response to plant water stress caused by salinity and by drought. Agric Water Manag 65:95–101

    Google Scholar 

  47. Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mung bean (Vigna radiate L.). Plant Physiol Biochem 80:67–74

    CAS  Google Scholar 

  48. Khan A, Khan AL, Muneer S, Kim YH, Al-Rawahi A, Al-Harrasi A (2019) Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. Front Plant Sci 10:1429. https://doi.org/10.3389/fpls.2019.01429

    Article  Google Scholar 

  49. Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    CAS  Google Scholar 

  50. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113–1119

    CAS  Google Scholar 

  51. Kochert A (1978) Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust JA, Craige JS (eds) Handbook of physiology and biochemical methods. Cambridge University Press, London, pp 95–97

    Google Scholar 

  52. Kollmer I, Werner T, Schmülling T (2011) Ectopic expression of different cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters plant growth and development. J Plant Physiol 168:1320–1327

    Google Scholar 

  53. Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23

    CAS  Google Scholar 

  54. Kumar KB, Khan PA (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Indian J Exp Biol 20:412–416

    CAS  Google Scholar 

  55. Laulhere JP, Barcelo F, Fontecave M (1996) Dynamic equilibria in iron uptake and release by ferritin. Biometals 9:303–309

    CAS  Google Scholar 

  56. Li Q, Yang A, Zhang WH (2016) Efficient acquisition of iron confers greater tolerance to saline alkaline stress in rice (Oryza sativa L.). J Exp Bot 67:6431–6444

    CAS  Google Scholar 

  57. Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234–241

    CAS  Google Scholar 

  58. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    CAS  Google Scholar 

  59. Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, Yu T, Gu W, Ma H (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteome 75:1529–1546

    CAS  Google Scholar 

  60. Mancinelli AL (1984) Photoregulation of anthocyanin synthesis: VIII. Effect of light pretreatments. Plant Physiol 75:447–453

    CAS  Google Scholar 

  61. Mishra A, Choudhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    CAS  Google Scholar 

  62. Mohammadi M, Ghassemi-Golezani K, Zehtab-Salmasi S, Nasrollahzade S (2016) Assessment of some physiological traits in spring safflower (Carthamus tinctorius L.) cultivars under water stress. Int J Life Sci 10:58–64

    Google Scholar 

  63. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Google Scholar 

  64. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  65. Pain D, Dancis A (2016) Roles of Fe-S clusters: from cofactor synthesis to iron homeostasis to protein synthesis. Curr Opin Genet Dev 38:45–51

    CAS  Google Scholar 

  66. Puyang X, An M, Han L, Zhang X (2015) Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf 117:96–106

    CAS  Google Scholar 

  67. Qados AMSA (2015) Mechanism of nano-silicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7:78–95

    Google Scholar 

  68. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    CAS  Google Scholar 

  69. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A 109:5535–5540

    CAS  Google Scholar 

  70. Rombola AD, Bruggemann W, Tagliavini M, Marangoni B, Moog PR (2000) Iron source affects iron reduction and re-greening of kiwifruit (Actinidia deliciosa) leaves. J Plant Nutr 23:1751–1765

    CAS  Google Scholar 

  71. Ronen E (2016) Micro-elements in agriculture. Pract Hydroponics Greenh 164:35–44

    Google Scholar 

  72. Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815. https://doi.org/10.3389/fpls.2016.00815

    Article  Google Scholar 

  73. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571. https://doi.org/10.3389/fpls.2016.00571

    Article  Google Scholar 

  74. Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 29:314–319

    Google Scholar 

  75. Sattelmacher B, Thoms K (1995) Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a locally restricted nitrate supply. Z Pflanzenernahr Bodenk 158:493–497

    CAS  Google Scholar 

  76. Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    CAS  Google Scholar 

  77. Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    CAS  Google Scholar 

  78. Shahrokh S, Hosseinkhani B, Emtiazi G (2014) The impact of silver nanoparticles on bacterial aerobic nitrate reduction process. J Bioprocess Biotechnol 4:152. https://doi.org/10.4172/2155-9821.1000152

    CAS  Article  Google Scholar 

  79. Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  80. Shao T, Li L, Wu Y, Chen M, Long X, Shao H, Liu Z, Rengel Z (2016) Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Sci Total Environ 568:891–898

    CAS  Google Scholar 

  81. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    CAS  Google Scholar 

  82. Shashi S, Sharma SS, Rai VK (1986) Reversal by phenolic compounds of abscisic acid induced inhibition of in vitro activity of amylase from seeds of Triticum aestivum L. New Phytol 103:293–297

    Google Scholar 

  83. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    CAS  Google Scholar 

  84. Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Aguero JA, Aguado-Santacruz GA, Jimenez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    CAS  Google Scholar 

  85. Singh AK, Dubey RS (1995) Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica 31:489–499

    CAS  Google Scholar 

  86. Singh PK, Gautam S (2013) Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant 35:2345–2353

    CAS  Google Scholar 

  87. Singh I, Singh V (2000) Antifungal properties of aqueous and organic solution extracts of seed plants against Aspergillus flavus and A niger. Phytomorphology 50:151–157

    Google Scholar 

  88. Singh BK, Sharma SR, Singh B (2010) Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase, peroxidase and catalase. Sci Hortic 124:9–13

    CAS  Google Scholar 

  89. Soliman MH, Alayafi AAM, El-Kelish AA, Abu-Elsaoud AM (2018) Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Bot Stud 59:6. https://doi.org/10.1186/s40529-018-0222-1

    CAS  Article  Google Scholar 

  90. Soliman M, El-Kelish A, Souad T, Alhaithloul H, Farooq M (2020) Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiol Mol Biol Plants 26:501–511. https://doi.org/10.1007/s12298-020-00765-7

    CAS  Article  Google Scholar 

  91. Strzalka K, Kostecka-Gugala A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–173

    CAS  Google Scholar 

  92. Taiz L, Zeiger E, Moller IM, Murphy A (2015) Plant physiology and development, 6th edn. Sinauer Associates, Sunderland

    Google Scholar 

  93. Torabian S, Farhangi-Abriz S, Rathjen J (2018) Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiol Biochem 129:141–149

    CAS  Google Scholar 

  94. Tukey HB, Wittwer SH, Bukovac MJ (1961) Absorption of radionuclides by aboveground plant parts and movement within the plant. J Agric Food Chem 9:106–113

    CAS  Google Scholar 

  95. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  96. Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem 48:5677–5684

    CAS  Google Scholar 

  97. Wang S, Xu L, Li G, Chen P, Xia K, Zhou X (2002) An ELISA for the determination of salicylic acid in plants using a monoclonal antibody. Plant Sci 162:529–535

    CAS  Google Scholar 

  98. Wang H, Tang X, Wang H, Shao HB (2015) Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci 6:792. https://doi.org/10.3389/fpls.2015.00792

    Article  Google Scholar 

  99. Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV (1993) Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta 190:555–561

    CAS  Google Scholar 

  100. Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603

    CAS  Google Scholar 

  101. Ye L, Li L, Wang L, Wang S, Li S, Du J, Zhang S, Shou H (2015) MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Front Plant Sci 6:953. https://doi.org/10.3389/fpls.2015.00953

    Article  Google Scholar 

  102. Zaimenko NV, Didyk NP, Dzyuba OI, Zakrasov OV, Rositska NV, Viter AV (2014) Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecol Balk 6:1–10

    Google Scholar 

  103. Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141

    CAS  Google Scholar 

  104. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836

    CAS  Google Scholar 

Download references

Funding

We appreciate the financial support of this work by the University of Tabriz and Iran National Science Foundation.

Author information

Affiliations

Authors

Contributions

Soheila Abdoli: Experimental work, statistical analysis, and writing

Kazem Ghassemi-Golezani: Experimental design, supervision, and writing

Saeideh Alizadeh-Salteh: Experimental help

Corresponding author

Correspondence to Kazem Ghassemi-Golezani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Mohamed M. Abdel-Daim

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdoli, S., Ghassemi-Golezani, K. & Alizadeh-Salteh, S. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09453-1

Download citation

Keywords

  • Antioxidants
  • Leaf pigments
  • Nano-Fe2O3
  • Plant growth
  • Salicylic acid
  • Salt stress