Analysis of melting reconstruction treatment and cement solidification on ultra-risk municipal solid waste incinerator fly ash–blast furnace slag mixtures

Abstract

High temperature melting treatment and cement solidification are technologies currently used to reduce the leaching of heavy metals in municipal solid waste incinerator (MSWI) fly ash. In this paper, to ascertain the feasibility of melting MSWI fly ash with blast furnace (BF) slag, ultra-risk MSWI(U-MSWI) fly ash having high heavy metal (Zn, Pb, Cu, and Cr) contents were blended with BF slag, then melted and quenched into water to prepare reconstructed slag. The melting and solidification behaviors, phase composition and microstructure, and heavy metal leachability of reconstructed slag were studied. In addition, to study the further solidification and utilization of reconstructed slag in cement, the compressive strength and leaching concentration of cement composites with reconstructed slag were also investigated. The results indicate that the presence of heavy metals in the U-MSWI fly ash had a little influence on the microstructure and phase composition of reconstructed slag. The leaching concentration of heavy metals in the reconstructed slag increased with the increasing of U-MSWI fly ash content, and when the content of U-MSWI fly ash was less than 50 wt%, the reconstructed slag could meet the environmental requirements. The reconstructed slag further solidified by cement could be applied to landfill and construction materials. The technology of melting reconstruction treatment with cement solidification was a technical-economical choice for the industrial treatment of U-MSWI fly ash.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alhadj-Mallah M-M, Huang Q, Cai X, Chi Y, Yan J (2015) Vitrification of municipal solid waste incineration fly ash using biomass ash as additives. Environ Technol 36(5):654–660

    CAS  Article  Google Scholar 

  2. Aubert JE, Husson B, Sarramone N (2007) Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement. Part 2: mechanical strength of mortars and environmental impact. J Hazard Mater 146(1-2):12–19

    CAS  Article  Google Scholar 

  3. Bie R, Chen P, Song X, Ji X (2016) Characteristics of municipal solid waste incineration fly ash with cement solidification treatment. J Energy Inst 89:704–712

    CAS  Article  Google Scholar 

  4. Chan CCY, Kirk DW, Marsh H (2000) The behaviour of Al in MSW incinerator fly ash during thermal treatment. J Hazard Mater 76(1):103–111

    CAS  Article  Google Scholar 

  5. Chen ZL, Lu SY, Tang MH, Ding JM, Buekens A, Yang J, Qiu QL, Yan JH (2019) Mechanical activation of fly ash from MSWI for utilization in cementitious materials. Waste Manag 88:182–190

    CAS  Article  Google Scholar 

  6. Chris CY, Donald WK (1999) Behavior of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents. J Hazard Mater B64(1):75–89

    Google Scholar 

  7. Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H (2017) Metal removal from municipal solid waste incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag 60:397–406

    CAS  Article  Google Scholar 

  8. Garcia-Lodeiro I, Carcelen-Taboada V, Fernández-Jiménez A, Palomo A (2016) Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr Build Mater 105:218–226

    CAS  Article  Google Scholar 

  9. Guo X, Hu W, Shi H (2014) Microstructure and self-solidification/stabilization (S/S) of heavy metals of nano-modified CFA–MSWIFA composite geopolymers. Constr Build Mater 56:81–86

    Article  Google Scholar 

  10. He X, Hou H, Zhang D (2006) Study on cement solidification of municipal solid waste incineration fly ash. Environ Poll Control 28:425–428

    CAS  Google Scholar 

  11. Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSWI incinerator fly ashes by chelating agents. J Hazard Mater 75(1):57–73

    CAS  Article  Google Scholar 

  12. Huber F, Herzel H, Adam C, Mallow O, Blasenbauer D, Fellner J (2018b) Combined disc pelletisation and thermal treatment ofMSWI fly ash. Waste Manag 73:381–391

    CAS  Article  Google Scholar 

  13. Huber F, Laner D, Fellner J (2018a) Comparative life cycle assessment of MSWI fly ash treatment and disposal. Waste Manag 73:392–403

    Article  Google Scholar 

  14. Jiang Y, Xi B, Li X, Zhang L, Wei Z (2009) Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator. J Hazard Mater 161:871–877

    CAS  Article  Google Scholar 

  15. Lederer J, Trinkel V, Fellner J (2017) Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: the case of Austria. Waste Manag 60:247–258

    CAS  Article  Google Scholar 

  16. Li RD, Nie YF, Wang L et al (2004) Heavy metal migration during vitrifciation of municipal solid waste incinerator fly ash. J Tsinghua Univ (Sci and Technol) 44(9):1180–1183

    CAS  Google Scholar 

  17. Lin KL, Lin DF (2006) Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cem Concr Compos 28(9):817–823

    CAS  Article  Google Scholar 

  18. Loginova E, Proskurnin M, HJH B (2019) Municipal solid waste incineration (MSWI) fly ash composition analysis: a case study of combined chelatant-based washing treatment efficiency. J Environ Manag 235:480–488

    CAS  Article  Google Scholar 

  19. Luo H, Cheng Y, He D, Yang E (2019) Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci Total Environ 668:90–103

    CAS  Article  Google Scholar 

  20. Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater 137(1):267–276

    CAS  Article  Google Scholar 

  21. Mangialardi T, Paolini AE, Polettini A, Sirini P (1999) Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. J Hazard Mater 70:53–70

    CAS  Article  Google Scholar 

  22. MEE, 2016. National Catalogue of Hazardous Waste, Ministry of Ecology and Environment of the People's Republich of China

  23. National Environmental Protection Agency (2007) GB5085.3-2007, Identification standard of hazardous waste: identification of leaching toxicity. Standards Press of China, Beijing

    Google Scholar 

  24. Ni G, Zhao P, Jiang Y, Meng Y (2012) Vitrification of MSWI fly ash by thermal plasma melting and fate of heavy metals. Plasma Sci Technol 14(9):813–818

    CAS  Article  Google Scholar 

  25. Nowak B, Sandra FR, Aschenbrenner P, Rechberger H, Winter F (2012) Heavy metal removal from msw fly ash by means of chlorination and thermal treatment: influence of the chloride type. Chem Eng J 179(1):178–185

    CAS  Article  Google Scholar 

  26. Pedersen AJ, Ottosen LM, Villumsen A (2005) Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater 122(1):103–109

    CAS  Article  Google Scholar 

  27. Phua Z, Giannis A, Dong Z, Lisak G, Ng W (2019) Characteristics of incineration ash for sustainable treatment and reutilization. Environ Sci Pollut Res 26:16974–16997

    CAS  Article  Google Scholar 

  28. Shi D, Hu C, Zhang J, Li P, Zhang C, Wang X, Ma H (2017a) Siliconaluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from MSW incineration. Fuel Process Technol 165:44–53

    CAS  Article  Google Scholar 

  29. Shi D, Zhang J, Zhang C, Hu C, Li P (2017b) Seed-induced hydrothermal synthesis of tobermorite from municipal solid waste incinerator fly ash. J Residuals Sci Technol 14(S1):11–19

    Article  Google Scholar 

  30. Sun Y, Zheng J, Zou L, Liu Q, Zhu P, Qian G (2011) Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals. Waste Manag 31:325–330

    CAS  Article  Google Scholar 

  31. Todorovic J, Ecke H (2006) Demobilisation of critical contaminants in four typical waste-to-energy ashes by carbonation. Waste Manag 26(4):430–441

    CAS  Article  Google Scholar 

  32. US Environmental Protection Agency (1986) Method 1311 SW-846. The method for evaluation solid waste, physical/ chemical methods. Governmental Printing Office, Washington

    Google Scholar 

  33. Wang L, He Z, Zhang B, Cai XH (2011) Polymerization mechanism of C-S-H: identified by FTIR and NMR. J Build Mater 14(4):447–451

    CAS  Google Scholar 

  34. Wang Q, Yang J, Wang Q, Wu T (2009) Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J Hazard Mater 162(2):812–818

    CAS  Article  Google Scholar 

  35. Wey MY, Liu KY, Tsai TH, Chou JT (2006) Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. J Hazard Mater 137(2):981–989

    CAS  Article  Google Scholar 

  36. Xie HQ, Li RQ, Wang ZY, Yao X, Yu QB (2019) Hydrogen production of bio-oil steam reforming combining heat recovery of blast furnace slag: thermodynamic analysis. Int J Hydrog Energy 44:25514–25523

    CAS  Article  Google Scholar 

  37. Xin LJ, Huan YJ, Qi JY, Jiang NM (2004) Characteristic analysis of heavy metals in MSWI fly ash. J Zhejiang Univ 38(4):490–494 (in Chinese)

    Google Scholar 

  38. Yang Z, Ji R, Liu L, Wang X, Zhang Z (2018) Recycling of municipal solid waste incineration by-product for cement composites preparation. Constr Build Mater 162:794–801

    CAS  Article  Google Scholar 

  39. Youcai Z, Lijie S, Guojian L (2002) Chemical stabilization of MSW incinerator fly ashes. J Hazard Mater 95(1):47–63

    Article  Google Scholar 

  40. Yuan RZ (1996) Glue material science. Wuhan University of Technology, Wuhan

    Google Scholar 

  41. Zhan X, Wang L, Hu C, Gong J, Xu T, Li J, Yang L, Bai J, Zhong S (2018) Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system. Waste Manag 82:62–70

    CAS  Article  Google Scholar 

Download references

Funding

The financial supports provided by the National Natural Science Foundation of China (No.51202222) and the Open Project Foundation of State Key Laboratory of Solid Waste Reuse for Building Materials (No.SWR-2013-002) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liugang Chen or Lei Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Ta Yeong Wu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Chen, L., Zhang, M. et al. Analysis of melting reconstruction treatment and cement solidification on ultra-risk municipal solid waste incinerator fly ash–blast furnace slag mixtures. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09395-8

Download citation

Keywords

  • Heavy metals
  • Reconstructed slag
  • Utilization
  • Leaching concentration
  • Landfill and construction materials
  • Industrial treatment