Effect of initial pH on the sludge fermentation performance enhanced by aged refuse at low temperature of 10 °C

Abstract

The efficiency of anaerobic fermentation of waste activated sludge (WAS) under low-temperature condition is usually low. This work reported a new strategy to enhance the low-temperature fermentation of WAS by using aged refuse (AR), and explored the effect of initial pH 4 till pH 12 on the production of short-chain fatty acid (SCFA) from AR-enhanced sludge fermentation. The results showed that AR improved WAS fermentation under low-temperature condition (10 °C), and the maximum accumulation of SCFA was 75.6 ± 3.5 mg/g, which was significantly higher than that of the blank (without AR). In addition, when the initial pH was 7, the maximum yield of methane was 102.2 ± 4.8 mL/g, whereas when the initial pH was 11, the maximum yield of SCFA was 85.6 ± 2.8 mg/g. Weak acid or alkali pH benefited hydrolysis and acidification of WAS, but inhibited methanogenesis. The release of NH4+-N and phosphate in a strong alkaline environment (pH 11 and 12) was lower than that in other alkaline environments (pH 10).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association (APHA), Washington

  2. Bashar R, Gungor K, Karthikeyan KG, Barak P (2018) Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere 2018(197):280–290. https://doi.org/10.1016/j.chemosphere.2017.12.169

    CAS  Article  Google Scholar 

  3. Herbert D, Philipps PJ, Strange RE (1971) Carbohydrate analysis. Methods Enzymol. B 5(680):265–277

    Google Scholar 

  4. Çelebi EB, Aksoy A, Sanin FD (2020) Effects of anaerobic digestion enhanced by ultrasound pretreatment on the fuel properties of municipal sludge. Environ Sci Pollut Res 27:17350–17358. https://doi.org/10.1007/s11356-020-08230-4

    CAS  Article  Google Scholar 

  5. Chen Y, Randall AA, McCue T (2004) The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Res 38(1):27–36. https://doi.org/10.1016/j.watres.2003.08.025

    CAS  Article  Google Scholar 

  6. Dong Y, Fei X (2020) Effect of isopropanol on crystal growth and photocatalytic properties regulation of anatase TiO2 single crystals. Mater Technol 35(2):102–111. https://doi.org/10.1080/10667857.2019.1659526

    CAS  Article  Google Scholar 

  7. Liao X, Li H, Zhang Y, Liu C, Chen Q (2016) Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int Biodeterior Biodegrad 106:141–149. https://doi.org/10.1016/j.ibiod.2015.10.023

    CAS  Article  Google Scholar 

  8. Li X, Peng Y, Ren N, Li B, Chai T, Zhang L (2014) Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca (OH)2 adjustment. Water Res 61:34–45. https://doi.org/10.1016/j.watres.2014.03.030

    CAS  Article  Google Scholar 

  9. Li M, Zhao Y, Guo Q, Qian X, Niu D (2008) Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy 33(12):2573–2579. https://doi.org/10.1016/j.renene.2008.02.018

    CAS  Article  Google Scholar 

  10. Liu J, Yuan Y, Li B, Zhang Q, Wu L, Li X, Peng Y (2017) Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. Bioresour Technol 244:1158–1165. https://doi.org/10.1016/j.biortech.2017.08.055

    CAS  Article  Google Scholar 

  11. Liu X, Xu Q, Wang D, Wu Y, Yang Q, Liu Y, Wang Q, Li X, Li H, Zeng G, Yang G (2019) Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Res 155:142–151. https://doi.org/10.1016/j.watres.2019.02.036

    CAS  Article  Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  13. Luo J, Chen Y, Feng L (2016) Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen. Environ Sci Technol 50(13):6921–6929. https://doi.org/10.1021/acs.est.6b00003

    CAS  Article  Google Scholar 

  14. Ma H, Chen X, Liu H, Liu H, Fu B (2016) Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: alkaline or neutral pH? Waste Manag 48:397–403. https://doi.org/10.1016/j.wasman.2015.11.029

    CAS  Article  Google Scholar 

  15. Maspolim Y, Zhou Y, Guo C, Xiao K, Ng WJ (2015) The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation. Bioresour Technol 190:289–298. https://doi.org/10.1016/j.biortech.2015.04.087

    CAS  Article  Google Scholar 

  16. Kang XR, Zhang GM, Chen L, Dong WY, Tian WD (2011) Effect of initial pH adjustment on hydrolysis and acidification of sludge by ultrasonic pretreatment. Ind Eng Chem Res 50(22):12372–12378

    CAS  Article  Google Scholar 

  17. Kuang Y, Zhao J, Gao Y, Lu C, Luo S, Sun Y, Zhang D (2020) Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. Environ Sci Pollut Res 27:18145–18156. https://doi.org/10.1007/s11356-020-08207-3

    CAS  Article  Google Scholar 

  18. Pan Y, Zhi Z, Zhen G, Lu X, Bakonyi P, Li YY, Zhao YC, Banu JR (2019) Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 253:40–49. https://doi.org/10.1016/j.fuel.2019.04.084

    CAS  Article  Google Scholar 

  19. Qiao X, Zhao C, Shao Q, Hassan M (2018) Structural characterization of corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Energy Fuel 32(5):6022–6030

    CAS  Article  Google Scholar 

  20. Rodríguez-Valderrama S, Escamilla-Alvarado C, Rivas-García P, Magnin JP, Alcalá-Rodríguez M, García-Reyes RB (2020) Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08580-z

  21. Wan J, Jing Y, Zhang S, Angelidaki I, Luo G (2016) Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: focusing on homoacetogenesis. Water Res 102:524–532. https://doi.org/10.1016/j.watres.2016.07.002

    CAS  Article  Google Scholar 

  22. Wang D, Zhao J, Zeng G, Chen Y, Bond PL, Li X (2015) How does poly (hydroxyalkanoate) affect methane production from the anaerobic digestion of waste-activated sludge? Environ Sci Technol 49(20):12253–12262. https://doi.org/10.1021/acs.est.5b03112

    CAS  Article  Google Scholar 

  23. Wang J, Wan W (2011) Combined effects of temperature and pH on biohydrogen production by anaerobic digested sludge. Biomass Bioenergy 35(9):3896–3901. https://doi.org/10.1016/j.biombioe.2011.06.016

    CAS  Article  Google Scholar 

  24. Xie B, Xiong S, Liang S, Hu C, Zhang X, Lu J (2012) Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresour Technol 103(1):71–77. https://doi.org/10.1016/j.biortech.2011.09.114

    CAS  Article  Google Scholar 

  25. Yan L, Ye J, Zhang P, Xu D, Wu Y, Liu J, Fang W, Wang B, Zeng G (2018) Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: effect of initial sludge pH. Bioresour Technol 259:67–74. https://doi.org/10.1016/j.biortech.2018.03.011

    CAS  Article  Google Scholar 

  26. Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–73. https://doi.org/10.1016/j.watres.2015.04.002

    CAS  Article  Google Scholar 

  27. Yuan Y, Wang S, Liu Y, Li B, Wang B, Peng Y (2015) Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems. Bioresour Technol 197:56–63. https://doi.org/10.1016/j.biortech.2015.08.025

    CAS  Article  Google Scholar 

  28. Yuan H, Zhu N (2016) Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew Sust Energ Rev 58:429–438. https://doi.org/10.1016/j.rser.2015.12.261

    CAS  Article  Google Scholar 

  29. Zhao C, Qiao X, Shao Q, Hassan M, Ma Z, Yao L (2020a) Synergistic effect of hydrogen peroxide and ammonia on lignin. Ind Crop Prod 146:112177. https://doi.org/10.1016/j.indcrop.2020.112177

    CAS  Article  Google Scholar 

  30. Zhao J, Wang D, Li X, Yang Q, Chen H, Zhong Y, Zeng G (2015a) Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Res 78:111–120. https://doi.org/10.1016/j.watres.2015.04.012

    CAS  Article  Google Scholar 

  31. Zhao J, Yang Q, Li X, Wang D, An H, Xie T, Xu Q, Deng Y, Zeng G (2015b) Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside. Int Biodeterior Biodegrad 104:283–289. https://doi.org/10.1016/j.ibiod.2015.06.012

    CAS  Article  Google Scholar 

  32. Zhao J, Zhang C, Wang D, Li X, An H, Xie T, Chen F, Xu Q, Sun Y, Zeng G, Yang Q (2016) Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the cofermentation of waste activated sludge and food waste. ACS Sustain Chem Eng 4(9):4675–4684. https://doi.org/10.1021/acssuschemeng.6b00816

  33. Zhao J, Gui L, Wang Q, Liu Y, Wang D, Ni BJ, Li X, Xu R, Zeng G, Yang Q (2017a) Aged refuse enhances anaerobic digestion of waste activated sludge. Water Res 123:724–733. https://doi.org/10.1016/j.watres.2017.07.026

    CAS  Article  Google Scholar 

  34. Zhao C, Qiao X, Cao Y, Shao Q (2017b) Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel 205:184–191. https://doi.org/10.1016/j.fuel.2017.05.073

    CAS  Article  Google Scholar 

  35. Zhao J, Liu Y, Wang Y, Lian Y, Wang Q, Yang Q, Wang D, Xie G, Zeng G, Sun Y, Li X (2018) Clarifying the role of free ammonia in the production of short-chain fatty acids from waste activated sludge anaerobic fermentation. ACS Sustain Chem Eng 6(11):14104–14113. https://doi.org/10.1021/acssuschemeng.8b02670

    CAS  Article  Google Scholar 

  36. Zhao J, Jing Y, Zhang J, Sun Y, Wang Y, Wang H, Bi X (2019) Aged refuse enhances anaerobic fermentation of food waste to produce short-chain fatty acids. Bioresour Technol 289:121547. https://doi.org/10.1016/j.biortech.2019.121547

    CAS  Article  Google Scholar 

  37. Zhao J, Xin M, Zhang J, Sun Y, Luo S, Wang H, Wang H, Bi X (2020b) Diclofenac inhibited the biological phosphorus removal: performance and mechanism. Chemosphere 243:125380. https://doi.org/10.1016/j.chemosphere.2019.125380

    CAS  Article  Google Scholar 

  38. Zhao Y, Lou Z, Guo Y, Xu D (2007) Treatment of sewage using an aged-refuse-based bioreactor. J Environ Manag 82(1):32–38. https://doi.org/10.1016/j.jenvman.2005.11.015

    CAS  Article  Google Scholar 

  39. Zhu J, Fu L, Jin C, Meng Z, Yang N (2019a) Study on the isolation of two atrazine-degrading bacteria and the development of a microbial agent. Microorganisms 7(3):80. https://doi.org/10.3390/microorganisms7030080

    CAS  Article  Google Scholar 

  40. Zhu J, Meng Z, Ge J, Wu Y, Ji C (2018a) Degradation characteristics of isocarbophos and isolation of an isocarbophos-degrading bacterium, Bacillus pumilus SALL-7. Fresenius Environ Bull 27(11):7552–7558

    CAS  Google Scholar 

  41. Zhu J, Ren X, Cao Y, Meng Z, Ge J, Zhao Y (2019b) Isolation and utilization of a chlorothalonil degrading bacterium, Sporolactobacillus terrae DACO-6. Fresenius Environ Bull 28(8):5830–5835

    CAS  Google Scholar 

  42. Zhu J, Zhao Y, Xie K, Li X, Chen Y (2018b) Study on biodegradation of chlorpyrifos and utilization of a chlorpyrifos degrading bacterium, Bacillus amyloliquefaciens CZ-5. Fresenius Environ Bull 27(2):1196–1201

    CAS  Google Scholar 

  43. Zhu J, Zhao Y, Fu L, Liu Z, Li X, Meng Z (2020a) Application of a simazine degrading bacterium, Arthrobacter ureafaciens XMJ-Z01 for bioremediation of simazine pollution. Water Environ J. https://doi.org/10.1111/wej.12560

  44. Zhu J, Meng Z, Zhao Y (2020b) Study on degradation of chlorpyrifos-methyl and utilization of a chlorpyrifos-methyl degrading bacterium, Bacillus vallismortis CM-11. Fresenius Environ Bull 29(3):1316–1321

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the project of the National Natural Science Foundation of China (NSFC) (No. 51908305). The project was funded by China Postdoctoral Science Foundation (2019M660162), the Open Project Fund of Qingdao University of Technology (QUTSEME201906), the Shandong Province Key Research and Development Program, China (2019GSF110005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianwei Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ta Yeong Wu

Electronic supplementary material

ESM 1

(DOC 45.5 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Gao, Y., Zhang, J. et al. Effect of initial pH on the sludge fermentation performance enhanced by aged refuse at low temperature of 10 °C. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09306-x

Download citation

Keywords

  • Anaerobic fermentation
  • Waste activated sludge
  • Methane
  • Short-chain fatty acid
  • Hydrolysis
  • Acidification
  • Phosphate