Effects of hydrogeochemical conditions on the distribution of pesticides in the karst river system

Abstract

Karst aquifer systems are tended to be polluted compared to other types of aquifers because pollutants are able to enter aquifers through developed conduit systems. To identify the effects of hydrogeochemical conditions on the distribution of pesticides in a karst river system in Kaiyang, southwest China, a typical pollution mode combining intermittent infiltration with intrusion was constructed. Twelve aqueous samples were collected along the karst river, and a total of 24 pesticides were detected. The results showed that the pesticide ubiquity and the dominant organophosphate (40%) and organonitrogen pesticides (49%) were both observed. Based on the spatial distribution, the attenuation of pesticides was found in the underground conduit and surface river. The wastewater treatment plant and the rural dump were the two important point sources releasing pesticides. In addition, ten core pesticides were identified by clustering analysis and regional characteristics of three types of pesticides in Songnen Plain, North China Plain, and Southwest karst areas were also summarized. With correlation analysis between pesticides and environmental factors, the significant correlations of pesticides with ammonium ion and dissolved oxygen were found, which indicated that rapid developing urbanization and long-term agricultural practices could remarkably affect the spatial distribution of pesticides. The calculation of ecological risk quotients showed that organophosphate pesticides had the highest risk to invertebrate, followed by organonitrogen pesticides, and finally organochlorine pesticides. Invertebrates were the most vulnerable aquatic organisms. These findings fill a gap in the multiple pesticides’ pollution in the karst areas of China.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmed G, Anawar HM, Takuwa DT, Chibua IT, Singh GS, Sichilongo K (2015) Environmental assessment of fate, transport and persistent behavior of dichlorodiphenyltrichloroethanes and hexachlorocyclohexanes in land and water ecosystems. Int J Environ Sci Technol 12:2741–2756. https://doi.org/10.1007/s13762-015-0792-3

    CAS  Article  Google Scholar 

  2. Ai L, Shi ZH, Yin W, Huang X (2015) Spatial and seasonal patterns in stream water contamination across mountainous watersheds: linkage with landscape characteristics. J Hydrol 523:398–408. https://doi.org/10.1016/j.jhydrol.2015.01.082

    CAS  Article  Google Scholar 

  3. Alam MJ, Yuan DX, Jiang YJ, Sun YC, Yong L, Xin X (2014) Sources and transports of organochlorine pesticides in the Nanshan underground river, China. Environ Earth Sci 71:1977–1987. https://doi.org/10.1007/s12665-013-2919-5

    CAS  Article  Google Scholar 

  4. Alfy ME, Faraj T (2016) Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use in arid areas. Environ Geochem Health 39:1–23. https://doi.org/10.1007/s10653-016-9825-1

    CAS  Article  Google Scholar 

  5. Bai Y, Ruan X (2018) Residues of organochlorine pesticides (OCPs) in aquatic environment and risk assessment along Shaying River, China. Environ Geochem Health 40:2525–2538. https://doi.org/10.1007/s10653-018-0117-9

    CAS  Article  Google Scholar 

  6. Brown C, Holmes C, Williams R, Beulke S, Beinum W, Pemberton E, Massey C (2007) How does crop type influence risk from pesticides to the aquatic environment? Environ Toxicol Chem 26:1818–1826. https://doi.org/10.1897/06-498R.1

    CAS  Article  Google Scholar 

  7. Carpenter CMG, Helbling DE (2018) Widespread micropollutant monitoring in the Hudson River estuary reveals spatiotemporal micropollutant clusters and their sources. Environ Sci Technol 52:6187–6196. https://doi.org/10.1021/acs.est.8b00945

    CAS  Article  Google Scholar 

  8. Cembranel AS, Frigo EP, Sampaio SC, Mercante E, Dos Reis RR, Remor MB (2017) Residue analysis of organochlorine and organophosphorus pesticides in urban lake sediments. Eng Agric 37:1254–1267. https://doi.org/10.1590/1809-4430-eng.agric.v37n6p1254-1267/2017

    Article  Google Scholar 

  9. Chaza C, Sopheak N, Mariam H, David D, Baghdad O, Moomen B (2017) Assessment of pesticide contamination in Akkar groundwater, northern Lebanon. Environ Sci Pollut Res 25:14302–14312. https://doi.org/10.1007/s11356-017-8568-6

    CAS  Article  Google Scholar 

  10. Chen H, Jing L, Teng Y, Wang J (2017) Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks. Sci Total Environ 618:409–418. https://doi.org/10.1016/j.scitotenv.2017.11.054

    CAS  Article  Google Scholar 

  11. Chowdhury AZ, Jahan SA, Islam MN, Moniruzzaman M, Alam MK, Zaman MA, Karim N, Gan SH (2012) Occurrence of organophosphorus and carbamate pesticide residues in surface water samples from the Rangpur district of Bangladesh. Bull Environ Contam Toxicol 89:202–207. https://doi.org/10.1007/s00128-012-0641-8

    CAS  Article  Google Scholar 

  12. Dai GH, Liu XH, Liang G, Han X, Shi L, Cheng DM, Gong WW (2011) Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. J Environ Sci 23:1640–1649. https://doi.org/10.1016/S1001-0742(10)60633-X

    CAS  Article  Google Scholar 

  13. Ding GD, Bao YX (2014) Revisiting pesticide exposure and children’s health: focus on China. Sci Total Environ 472:289–295. https://doi.org/10.1016/j.scitotenv.2013.11.067

    CAS  Article  Google Scholar 

  14. Grung M, Lin Y, Zhang H, Steen AO, Huang J, Zhang G, Larssen T (2015) Pesticide levels and environmental risk in aquatic environments in China—a review. Environ Int 81:87–97. https://doi.org/10.1016/j.envint.2015.04.013

    CAS  Article  Google Scholar 

  15. Guo F, Yuan DX, Qin ZJ (2010) Groundwater contamination in karst areas of southwestern china and recommended countermeasures. Acta Carsologica 39:389–399

    Article  Google Scholar 

  16. He QF, Yang PH, Yuan WH, Jiang YJ, Pu JB, Yuan DX, Kuang YL (2010) The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China. Hydrogeol J 18:1281–1289. https://doi.org/10.1007/s10040-010-0594-0

    CAS  Article  Google Scholar 

  17. He QF, Qiu SL, Jiang YJ, Wu Z, Liu ZQ (2016) Land-use change caused microbial pollution in a karst underground river, Chongqing, China. Environ Earth Sci 75:709. https://doi.org/10.1007/s12665-016-5530-8

    CAS  Article  Google Scholar 

  18. Hillebrand O, Nodler K, Licha T, Sauter M, Geyer T (2012) Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine. Water Res 46:5381–5388. https://doi.org/10.1016/j.watres.2012.07.032

    CAS  Article  Google Scholar 

  19. Hu L, Zhang G, Zheng B, Qin Y, Lin T, Guo Z (2009) Occurrence and distribution of organochlorine pesticides (OCPs) in surface sediments of the Bohai Sea, China. Chemosphere 77:663–672. https://doi.org/10.1016/j.chemosphere.2009.07.070

    CAS  Article  Google Scholar 

  20. Hu Y, Qi SH, Zhang JP, Tan LZ, Zhang JQ, Wang YH, Yuan DX (2011) Assessment of organochlorine pesticides contamination in underground rivers in Chongqing, Southwest China. J Geochem Explor 111:47–55. https://doi.org/10.1016/j.gexplo.2011.07.006

    CAS  Article  Google Scholar 

  21. Huang FY, Zou SZ, Deng DD, Lang H, Liu F (2019a) Antibiotics in a typical karst river system in China: spatiotemporal variation and environmental risks. Sci Total Environ 650:1348–1355. https://doi.org/10.1016/j.scitotenv.2018.09.131

    CAS  Article  Google Scholar 

  22. Huang FY, Li ZY, Zhang C, Habumugisha T, Liu F, Luo XM (2019b) Pesticides in the typical agricultural groundwater in Songnen plain, northeast China: occurrence, spatial distribution and health risks. Environ Geochem Health. 41:2681–2695. https://doi.org/10.1007/s10653-019-00331-5

    CAS  Article  Google Scholar 

  23. Jiang YJ, Yan J (2010) Effects of land use on hydrochemistry and contamination of karst groundwater from Nandong underground river system, China. Water, Air, Soil Pollut 210:123–141. https://doi.org/10.1007/s11270-009-0229-z

    CAS  Article  Google Scholar 

  24. Jiang YF, Wang XT, Jia Y, Wang F, Wu MH, Sheng GY, Fu JM (2009) Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J Hazard Mater 170:989–997. https://doi.org/10.1016/j.jhazmat.2009.05.082

    CAS  Article  Google Scholar 

  25. Kata M, Srinivasa Rao S, Rama Mohan K (2015) Spatial distribution, ecological risk evaluation and potential sources of organochlorine pesticides from soils in India. Environ Earth Sci 74:4031–4038. https://doi.org/10.1007/s12665-014-3189-6

    CAS  Article  Google Scholar 

  26. Levy W, Pandelova M, Henkelmann B, Bernhoeft S, Fischer N, Antritter F, Schramm K-W (2017) Persistent organic pollutants in shallow percolated water of the Alps Karst system (Zugspitze summit, Germany). Sci Total Environ 579:1269–1281. https://doi.org/10.1016/j.scitotenv.2016.11.113

    CAS  Article  Google Scholar 

  27. Li J, Li F, Liu Q (2015) Sources, concentrations and risk factors of organochlorine pesticides in soil, water and sediment in the Yellow River estuary. Mar Pollut Bull 100:516–522. https://doi.org/10.1016/j.marpolbul.2015.09.003

    CAS  Article  Google Scholar 

  28. Masia A, Campo J, Vazquez-Roig P, Blasco C, Pico Y (2013) Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J Hazard Mater 263:95–104. https://doi.org/10.1016/j.jhazmat.2013.09.035

    CAS  Article  Google Scholar 

  29. Mohammad FK, Stomer VEV (1983) Interaction of dichlorvos-crotoxyphos insecticide with phenothiazine anthelmintic in sheep with or without haemonchus and trichostrongylus infections. Am J Vet Res 44:1949–1953. https://doi.org/10.2307/20094715

    CAS  Article  Google Scholar 

  30. Nemecek T, Huguenin-Elie O, Dubois D, Gaillard G, Schaller B, Chervet A (2011) Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric Syst 104:233–245. https://doi.org/10.1016/j.agsy.2010.07.007

    Article  Google Scholar 

  31. Otieno P, Lalah J, Virani M, Jondiko IO, Schramm K-W (2010) Soil and water contamination with carbofuran residues in agricultural farmlands in Kenya following the application of the technical formulation Furadan. J Environ Sci Health, Part B 45:137–144. https://doi.org/10.1080/0360123090347205

  32. Park DW, Kim KG, Choi EA, Kang GR, Kim TS, Yang YS, Moon SJ, Ha DR, Kim ES, Cho BS (2016) Pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea: a long-term study on safety and health risk assessment. Food Addit Contam 33:105–118. https://doi.org/10.1080/19440049.2015.1108524

    CAS  Article  Google Scholar 

  33. Qiu XH, Zhu T, Wang F, Hu JX (2008) Air-water gas exchange of organochlorine pesticides in Taihu Lake, China. Environ Sci Technol 42:1928–1932

    CAS  Article  Google Scholar 

  34. Qu CS, Chen W, Bi J, Huang L, Li FY (2011) Ecological risk assessment of pesticide residues in Taihu Lake wetland, China. Ecol Modell 222:287–292. https://doi.org/10.1016/j.ecolmodel.2010.07.014

    CAS  Article  Google Scholar 

  35. Sun JH, Feng JL, Liu Q, Li QL (2010) Distribution and sources of organochlorine pesticides (OCPs) in sediments from upper reach of Huaihe River, East China. J Hazard Mater 184:141–146. https://doi.org/10.1016/j.jhazmat.2010.08.016

    CAS  Article  Google Scholar 

  36. Thomatou A-A, Zacharias I, Hela D, Konstantinou I (2012) Determination and risk assessment of pesticide residues in lake Amvrakia (W. Greece) after agricultural land use changes in the lake’s drainage basin. Int J Environ Anal Chem 93:1–20. https://doi.org/10.1080/03067319.2012.656099

    CAS  Article  Google Scholar 

  37. Toccalino PL, Gilliom RJ, Lindsey BD, Rupert MG (2014) Pesticides in groundwater of the United States: decadal-scale changes, 1993-2011. Ground Water 52:112–125. https://doi.org/10.1111/gwat.12176

    CAS  Article  Google Scholar 

  38. Walker K, And DAV, Lewis RG (1999) Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33:4373–4378. https://doi.org/10.1021/es990647n

    CAS  Article  Google Scholar 

  39. Wang SQ, Song XF, Wang QX, Xiao GQ, Liu CM, Liu JR (2009) Shallow groundwater dynamics in North China Plain. J Geogr Sci 19:175–188. https://doi.org/10.1007/s11442-009-0175-0

    Article  Google Scholar 

  40. Wang YH, Guo SJ, Xue R, Qi SH, Xu YY, Xue BM, Yuan DX (2011) Organochlorine pesticides in the soil of a karst cave in Guilin, China. Environ Monit Assess 180:489–500. https://doi.org/10.1007/s10661-010-1801-0

    CAS  Article  Google Scholar 

  41. Wang YH, Xu YY, Qi SH, Li XM, Kong XS, Yuan DX, Theodore OI (2013) Distribution and potential sources of organochlorine pesticides in the karst soils of a tiankeng in southwest China. Environ Earth Sci 70:2873–2881. https://doi.org/10.1007/s12665-013-2349-4

    CAS  Article  Google Scholar 

  42. Wang JC, Zhao YS, Sun JC, Zhang Y, Liu CY (2019) The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Front Earth Sci 13:33–42. https://doi.org/10.1007/s11707-018-0701-4

    CAS  Article  Google Scholar 

  43. Willett KL, And EMU, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207. https://doi.org/10.1021/es9708530

    CAS  Article  Google Scholar 

  44. Wu C, Luo Y, Gui T, Huang Y (2013) Concentrations and potential health hazards of organochlorine pesticides in (shallow) groundwater of Taihu Lake region, China. Sci Total Environ 470:1047–1055. https://doi.org/10.1016/j.scitotenv.2013.10.056

    CAS  Article  Google Scholar 

  45. Xie HJ, Wang X, Chen J, Li X, Jia G, Zou Y, Zhang Y, Cui Y (2019) Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China. Sci Total Environ 656:946–951. https://doi.org/10.1016/j.scitotenv.2018.11.449

    CAS  Article  Google Scholar 

  46. Xing XL, Qi SH, Odhiambo JO, Zhang Y, Liu YP (2009) Influence of environmental variables on spatial distribution of organochlorine pesticides in Sichuan, West China. Environ Earth Sci 59:215–222. https://doi.org/10.1007/s12665-009-0018-4

    CAS  Article  Google Scholar 

  47. Yadav IC, Devi NL, Syed JH, Cheng ZN, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    CAS  Article  Google Scholar 

  48. Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H, Gu L (2013) Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environ Pollut 175:22–29. https://doi.org/10.1016/j.envpol.2012.12.008

    CAS  Article  Google Scholar 

  49. Yang YY, Mu LD (2008) Levels, seasonal variations and sources of organochlorine pesticides in ambient air of Guangzhou, China. Atmos Environ 42:677–687. https://doi.org/10.1016/j.atmosenv.2007.09.061

    CAS  Article  Google Scholar 

  50. Zhang ZL, Huang J, Yu G, Hong HS (2004) Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut 130:249–261

    CAS  Article  Google Scholar 

  51. Zhang D, Wang YH, Yu KF, Li PY, Zhang RJ, Xu YY (2014) Occurrence, distribution and sources of organochlorine pesticides (OCPs) in surface sediments from the Lijiang River, a typical karst river of southwestern China. Bull Environ Contam Toxicol 93:580–585. https://doi.org/10.1007/s00128-014-1387-2

    CAS  Article  Google Scholar 

  52. Zhang B, Song XF, Zhang YH, Han DM, Tang CY, Yang LH, Wang ZL (2017) The renewability and quality of shallow groundwater in Sanjiang and Songnen Plain, Northeast China. Journal Integr Agric 16:229–238. https://doi.org/10.1016/s2095-3119(16)61349-7

    CAS  Article  Google Scholar 

  53. Zhao LS, Hou R (2019) Human causes of soil loss in rural karst environments: a case study of Guizhou, China. Sci Rep 9:3225. https://doi.org/10.1038/s41598-018-35808-3

    CAS  Article  Google Scholar 

  54. Zheng SL, Chen B, Qiu XY, Chen M, Ma ZY, Yu XG (2016) Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 144:1177–1192. https://doi.org/10.1016/j.chemosphere.2015.09.050

    CAS  Article  Google Scholar 

  55. Zou SZ, Huang FY, Chen L, Liu F (2018) The occurrence and distribution of antibiotics in the Karst River System in Kaiyang, Southwest China. Water Sci Technol: Water Supply 18:2044–2052. https://doi.org/10.2166/ws.2018.026

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the China Geological Survey (DD20190323).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Ester Heath

Electronic supplementary material

ESM 1

(DOCX 431 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Huang, F., Zhang, C. et al. Effects of hydrogeochemical conditions on the distribution of pesticides in the karst river system. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-09262-6

Download citation

Keywords

  • Karst river system
  • Hydrogeochemical conditions
  • Pesticides
  • Distribution
  • Risk assessment