• Environmental Toxicity Assessment: State of the Art and Future Directions in a World of Arising Threats
  • Published:

Chemical and ecotoxicological assessment of sludge-based biosolids used for corn field fertilization

Abstract

Sludge-based biosolids can be used for crop fertilization and for soil enrichment with organic matter. The prerequisites for their application are laid out in 86/278/EEC which sets limits for metals of toxicological concern in the biosolid and in the recipient soil. In this context, three kinds of sludge-based biosolids from a municipal wastewater treatment plant were submitted to the leaching tests EN 12457-2 and ΝΕΝ 7341. The leachates were examined for their physicochemical, chemical, and ecotoxicological characteristics four times within a year. Even in the more aggressive metal leaching method (ΝΕΝ 7341), results were much lower than the limits set in Council Directive 86/278/EEC. Correlations were noted between numerous parameters and principal component analysis grouped them in 3 components explaining 76% of total variation. These leaching tests were also performed on soil-biosolid samples from another investigative research in which two of the three kinds of biosolids had been incorporated in corn fields at doses 0, 20, and 40 tn/ha. EN 12457-2 leaching tests indicated that Ni and Cd leaching was affected by biosolid incorporation in soil, in relation to the type of the receiving soil (clay or sand). The leachates from the soil-biosolid mixtures were practically not toxic for the organisms tested (D. magna, V. fischeri, higher plants). In summary the biosolids were considered of low environmental risk when utilized in the field. A detailed risk assessment encompassing both chemical and ecotoxicological analysis is necessary for integrated evaluation of biosolids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AUT:

Autumn

LM:

Limed biosolid

DH:

Dehydrated biosolid

LM_Clay:

Limed biosolid clay soil

DH_Clay:

Dehydrated biosolid clay soil

LM_EN:

Limed biosolid EN 12457-2 leaching

DH_EN:

Dehydrated biosolid EN 12457-2 leaching

LM_NEN:

Limed biosolid NEN 7341 leaching

DH_NEN:

Dehydrated biosolid NEN 7341 leaching

LM_Sand:

Limed biosolid sandy soil

DH_Sand:

Dehydrated biosolid sandy soil

SPR:

Spring

DR:

Dried biosolid

SUM:

Summer

DR_EN:

Dried biosolid EN 12457-2 leaching

WINT:

Winter

DR_NEN:

Dried biosolid NEN 7341 leaching

References

  1. Abreu-Junior CH, de Lima Brossi MJ, Monteiro RT, Cardoso PHS, da Silva MT, Nogueira TAR, Ganga A, Filzmoser P, de Oliveira FC, Firme LP, He Z, Capra GF (2019) Effects of sewage sludge application on unfertile tropical soils evaluated by multiple approaches: a field experiment in a commercial Eucalyptus plantation. Sci Total Environ 655:1457–1467. https://doi.org/10.1016/j.scitotenv.2018.11.334

    CAS  Article  Google Scholar 

  2. Ahmed HK, Fawy HA, Abdel-Hady ES (2010) Study of sewage sludge use in agriculture and its effect on plant and soil. ABJNA 1(5):1044–1049. https://doi.org/10.5251/abjna.2010.1.5.1044.1049

    CAS  Article  Google Scholar 

  3. Alvarez EA, Mochón MC, Jiménez Sánchez JC, Ternero Rodríguez M (2002) Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere 47(7):765–775. https://doi.org/10.1016/S0045-6535(02)00021-8

    CAS  Article  Google Scholar 

  4. Antoniadis V, Alloway BJ (2002) The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ Pollut 117:515–521. https://doi.org/10.1016/S0269-7491(01)00172-5

    CAS  Article  Google Scholar 

  5. Bagale KV (2018) The effect of electrical conductivity on growth and development of strawberries grown in deep tank hydroponic systems, a physiological study. J Pharmacogn Phytochem 7:1939–1944

    CAS  Google Scholar 

  6. Bakopoulou S, Emmanouil C, Kungolos A (2011) Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential. Ecotoxicol Environ Saf 74:188–194. https://doi.org/10.1016/j.ecoenv.2010.06.022

    CAS  Article  Google Scholar 

  7. CEN (2002) EN12457–2. Characterization of waste–leaching–compliance test for leaching of granular waste material and sludge-Part 2: European Committee for Standardization

  8. Cherfouh R, Lucas Y, Derridj A, Merdy P (2018) Long-term, low technicality sewage sludge amendment and irrigation with treated wastewater under Mediterranean climate: impact on agronomical soil quality. Environ Sci Pollut Res 25:35571–35581. https://doi.org/10.1007/s11356-018-3463-3

    CAS  Article  Google Scholar 

  9. Christofi N, Hoffmann C, Tosh L (2002) Hormesis responses of free and immobilized light-emitting bacteria. Ecotoxicol Environ Saf 52:227–231. https://doi.org/10.1006/eesa.2002.2203

    CAS  Article  Google Scholar 

  10. Collivignarelli MC, Canato M, Abbà A, Miino MC (2019) Biosolids: what are the different types of reuse? J Clean Prod 238:117844. https://doi.org/10.1016/j.jclepro.2019.117844

    CAS  Article  Google Scholar 

  11. Council Decision 2003/33/EC of 19 December 2002 Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Available on https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32003D0033&from=EL

  12. Council Directive 86/278/EEC of 12 June 1986 On the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Available on https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31986L0278

  13. Dad K, Wahid A, Khan AA, Anwar A, Ali M, Sarwar N, Ali S, Ahmad A, Ahmad M, Khan KA, Ansari MJ, Gulshan AB, Mohammed AA (2019) Nutritional status of different biosolids and their impact on various growth parameters of wheat (Triticum aestivum L.). Saudi J Biol Sci 26:1423–1428. https://doi.org/10.1016/j.sjbs.2018.09.001

    CAS  Article  Google Scholar 

  14. Dinh T, Choi I, Son Y, Kim J (2016) A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sensors Actuators B Chem 231:529–538. https://doi.org/10.1016/j.snb.2016.03.040

    CAS  Article  Google Scholar 

  15. Emmanouil C, Bekyrou M, Psomopoulos C, Kungolos A (2019) An insight into ingredients of toxicological interest in personal care products and a small–scale sampling survey of the Greek market: delineating a potential contamination source for water resources. Water 11(12):2501. https://doi.org/10.3390/w11122501

    CAS  Article  Google Scholar 

  16. European Commission, DG Environment (2010) Environmental, economic and social impacts of the use of sewage sludge on land Final Report Part III: Project Interim Reports

  17. European Commission ec.europa.eu (2019) http://ec.europa.eu/environment/waste/sludge/index.htm (last accessed December 2019)

  18. Freitas AM, Rivas G, Campos-Mañas MC, Agüera A, Sánchez Pérez JA (2017) Ecotoxicity evaluation of a WWTP effluent treated by solar photo-Fenton at neutral pH in a raceway pond reactor. Environ Sci Pollut Res 24:1093–1104. https://doi.org/10.1007/s11356-016-7101-7

    CAS  Article  Google Scholar 

  19. Fuentes Α, Lloréns M, Sáez J, Soler A, Aguilar MI, Ortuño JF, Meseguer VF (2004) Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere 54:1039–1047. https://doi.org/10.1016/j.chemosphere.2003.10.029

    CAS  Article  Google Scholar 

  20. García-Gómez C, Babin M, Obrador A, Álvarez JM, Fernández MD (2015) Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res 22:16803–16813. https://doi.org/10.1007/s11356-015-4867-y

    CAS  Article  Google Scholar 

  21. Garcia-Miragaya J (1984) Levels, chemical fractionation, and solubility of lead in roadside soils of Caracas, Venezuela. Soil Sci 138:147–152

    CAS  Article  Google Scholar 

  22. Hanay Ö, Hasar H, Kocer NN, Aslan S (2008) Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge. Bull Environ Contam Toxicol 81(1):42–46. https://doi.org/10.1007/s00128-008-9451-4

    CAS  Article  Google Scholar 

  23. Hudcova H, Vymazal J, Rozkosny M (2019) Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res 14:104–120. https://doi.org/10.17221/36/2018-SWR

    CAS  Article  Google Scholar 

  24. ISO 18763 (2016) Soil quality -- Determination of the toxic effects of pollutants on germination and early growth of higher plants

  25. ISO 6341 (1996) Water quality-determination of the inhibition of the mobility of Daphnia magna Strauss (eds. Cladocera, Crustacea). International Organization for Standardization. ISO 6341

  26. Kończak M, Oleszczuk P (2018) Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Sci Total Environ 625:8–15. https://doi.org/10.1016/j.scitotenv.2017.12.118

    CAS  Article  Google Scholar 

  27. Kouloubis P, Tsantilas C (2008) Handbook of good agricultural practice for the valorization of sewage sludge, 1st edn. Ministry of Agricultural Development and Food, Athens (in Greek)

    Google Scholar 

  28. Lasaridi K-E, Manios T, Stamatiadis S, Chroni C, Kyriacou A (2019) The evaluation of hazards to man and the environment during the composting of sewage sludge. Sustainability 10:2618. https://doi.org/10.3390/su10082618

    CAS  Article  Google Scholar 

  29. Lee CH, Liu JC (2000) Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res 18:4430–4436. https://doi.org/10.1016/S0043-1354(00)00209-8

    Article  Google Scholar 

  30. Malara A, Oleszczuk P (2013) Application of a battery of biotests for the determination of leachate toxicity to bacteria and invertebrates from sewage sludge-amended soil. Environ Sci Pollut Res Int 20(5):3435–3446. https://doi.org/10.1007/s11356-012-1268-3

    CAS  Article  Google Scholar 

  31. Manusadzianas L, Balkelyte L, Sadauskas K, Blinova I, Põllumaa L, Kahru A (2003) Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquat Toxicol 63(1):27–41

    CAS  Article  Google Scholar 

  32. Microbics Corporation (1992) Microtox Manual. AZUR Environmental, Carlsbad

    Google Scholar 

  33. OECD Guideline 207 for Testing of Chemicals (1984) Earthworm, acute toxicity test

  34. Omnilab (2019) Determination of Biochemical Oxygen Demand (BOD available at: http://old.omnilab.de/hpb/export/2/BSB_E.PDF. last accessed December 2019

  35. Pantazopoulou E, Zebiliadou O, Noli F, Mitrakas M, Samaras P, Zouboulis A (2015) Utilization of phosphogypsum in tannery sludge stabilization and evaluation of the radiological impact. Bull Environ Contam Toxicol 94(3):352–357. https://doi.org/10.1007/s00128-014-1422-3

    CAS  Article  Google Scholar 

  36. Papaoikonomou K, Emmanouil C, Latinopoulos D, Kungolos A (2020) A survey on factors influencing recycling behavior for waste of electrical and electronic equipment in the municipality of Volos, Greece. Environ Process 7:321–339. https://doi.org/10.1007/s40710-019-00399-2

    Article  Google Scholar 

  37. Patton C, Kryskalla J (2011) Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods. In: Techniques and Methods, U.S. Geological Survey, book 5, chap B8: 1–34

  38. Persoone G, Marsalek B, Blinova I, Törökne A, Zarina D, Manusadzianas L, Nałęcz-Jawecki G, Tofan L, Stepanova N, Tothova L, Kolar B (2003) A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ Toxicol 18:395–402. https://doi.org/10.1002/tox.10141

    CAS  Article  Google Scholar 

  39. Richards BK, Steenhuis TS, Peverly JH, McBride MB (2000) Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environ Pollut 109:327–346. https://doi.org/10.1016/S0269-7491(99)00249-3

    CAS  Article  Google Scholar 

  40. Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavailab 10:61–75. https://doi.org/10.3184/095422998782775835

    CAS  Article  Google Scholar 

  41. Roig N, Sierra J, Nadal M, Martí E, Navalón-Madrigal P, Schuhmacher M, Domingo JL (2012) Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Sci Total Environ 425:99–109. https://doi.org/10.1016/j.scitotenv.2012.03.018

    CAS  Article  Google Scholar 

  42. Rudde H (2014) Method of determining a concentration of nitrate. United States, Hach Lange GmbH, Berlin, p 20140011283

    Google Scholar 

  43. Sharma B, Sarkar A, Singh P, Singh R (2017) Agricultural utilization of biosolids: a review on potential effects on soil and plant grown. Waste Manag 64:117–132. https://doi.org/10.1016/j.wasman.2017.03.002

    CAS  Article  Google Scholar 

  44. Singh RP, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manag 28:347–358. https://doi.org/10.1016/j.wasman.2006.12.010

    CAS  Article  Google Scholar 

  45. Tabei Y, Era M, Ogawa A, Morita H (2012) Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri. J Basic Microbiol 52(3):350–359. https://doi.org/10.1002/jobm.201100185

    CAS  Article  Google Scholar 

  46. Teodorovic I, Planojevic I, Knezevic I, Radak S, Nemet I (2009) Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Cent Eur J Biol 4:482–492. https://doi.org/10.2478/s11535-009-0048-7

    CAS  Article  Google Scholar 

  47. Tsadilas CD, Matsi T, Barbayiannis N, Dimoyiannis D (1995) Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions. Commun Soil Sci Plan 26:2603–2619. https://doi.org/10.1080/00103629509369471

    CAS  Article  Google Scholar 

  48. Ure AM, Quevauviller PH, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of European Communities. Int J Environ Anal Chem 51(1–4):135–151. https://doi.org/10.1080/03067319308027619

    CAS  Article  Google Scholar 

  49. van der Sloot HA, Comans RNJ, Meeussen JCL, Dijkstra JJ (2003) Leaching methods for soil, sludge and treated biowaste. ECN – Environmental Risk Assessment, Final Report Horizontal-23

  50. Wang C, Li XC, Ma HT, Qian J, Zhai JB (2006) Distribution of extractable fractions of heavy metals in sludge during the wastewater treatment process. J Hazard Mater 137(3):1277–1283. https://doi.org/10.1016/j.jhazmat.2006.04.026

    CAS  Article  Google Scholar 

  51. Wang X, Wei D, Ma Y, McLaughlin MJ (2018) Soil ecological criteria for nickel as a function of soil properties. Environ Sci Pollut Res 25:2137–2146. https://doi.org/10.1007/s11356-017-0456-6

    CAS  Article  Google Scholar 

  52. Wlodarczyk Ε, Próba M, Wolny L (2016) Ecotoxicity assessment of stabilized sewage sludge from municipal sewage treatment plant. Civ Environ Eng Rep 22:157–166. https://doi.org/10.1515/ceer-2016-0044

    Article  Google Scholar 

  53. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  54. Zaman M, Kim M, Nakhla G, Singh A, Yang F (2019) Enhanced biological phosphorus removal using thermal alkaline hydrolyzed municipal wastewater biosolids. J Environ Sci 86:164–174. https://doi.org/10.1016/j.jes.2019.05.025

    Article  Google Scholar 

  55. Zorpas A, Coumi C, Drtil M, Voukalli I (2011) Municipal sewage sludge characteristics and waste water treatment plant effectiveness under warm climate conditions. Des Water Treat 36:319–333. https://doi.org/10.5004/dwt.2011.2773

    CAS  Article  Google Scholar 

  56. ΝΝΙ (1995) NEN 7341-leaching characteristics of solid earthy and stony building materials. Leaching tests. Determination of the availability of inorganic components for leaching

Download references

Acknowledgments

The present research was funded by EYATH S.A. (contract number: RC AUTH 97019).

Mr Giannakis’ scholarship: a«This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ)»

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christina Emmanouil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giannakis, I., Emmanouil, C., Mitrakas, M. et al. Chemical and ecotoxicological assessment of sludge-based biosolids used for corn field fertilization. Environ Sci Pollut Res 28, 3797–3809 (2021). https://doi.org/10.1007/s11356-020-09165-6

Download citation

Keywords

  • Biosolids
  • Sludge
  • Bioassays
  • Metals
  • Risk assessment