Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions

Abstract

In this study, we have investigated the removal efficiency of two organic pollutants: methylene blue (MB) and Reactive Blue 19 (RB19) dyes by using a brown marine alga abundantly available on the Moroccan coastlines called Bifurcaria bifurcata (Bif-Bcata). During the experiments that were conducted in batch mode, we have studied the effect of some parameters such as pH, Bif-Bcata mass, contact time, and initial dye concentration in order to optimize the most suitable biosorption conditions. The biosorption tests on Bif-Bcata showed that the equilibrium is reached after 15 min for both dyes MB and RB19. The optimal pH values are 5.6 and 1.0 for MB and RB19, respectively. Kinetic studies revealed that the biosorption of both dyes follows the pseudo-second-order model. The biosorption isotherms demonstrated that the Langmuir model is the most appropriate to describe the biosorption equilibrium for both dyes MB and RB19 with maximum biosorption capacities reaching 2744.5 mg/g for MB and 88.7 mg/g for RB19. According to these results, it is clear that Bif-Bcata can be considered a promising biomaterial to be used as an effective biosorbent for the elimination of cationic and anionic dyes from textile effluents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aarfane A, Salhi A, El Krati M et al (2014a) Etude cinétique et thermodynamique de l’adsorption des colorants Red195 et Bleu de méthylène en milieu aqueux sur les cendres volantes et les mâchefers. J Mater Environ Sci 5:1927–1939

    CAS  Google Scholar 

  2. Aarfane A, Salhi A, El Krati M et al (2014b) Kinetic and thermodynamic study of the adsorption of Red195 and methylene blue dyes on fly ash and bottom ash in aqueous medium. J Mater Environ Sci 5:1927–1939

    CAS  Google Scholar 

  3. Ada K, Ergene A, Tan S, Yalçin E (2009) Adsorption of Remazol Brilliant Blue R using ZnO fine powder: equilibrium, kinetic and thermodynamic modeling studies. J Hazard Mater 165:637–644. https://doi.org/10.1016/j.jhazmat.2008.10.036

    CAS  Article  Google Scholar 

  4. Ahmad MA, Ahmad N, Bello OS (2015) Removal of Remazol Brilliant Blue reactive dye from aqueous solutions using watermelon rinds as adsorbent. J Dispers Sci Technol 36:845–858. https://doi.org/10.1080/01932691.2014.925400

    CAS  Article  Google Scholar 

  5. Ait Ahsaine H, El Jaouhari A, Slassi A et al (2016) Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. RSC Adv 6:101105–101114. https://doi.org/10.1039/C6RA22669H

    CAS  Article  Google Scholar 

  6. Ait Ahsaine H, Zbair M, Anfar Z et al (2018) Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: kinetics, equilibrium isotherms and surface statistical modeling. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2018.03.004

  7. Al-Harahsheh MS, Al Zboon K, Al-Makhadmeh L et al (2015) Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J Environ Chem Eng 3:1669–1677. https://doi.org/10.1016/j.jece.2015.06.005

    CAS  Article  Google Scholar 

  8. Al-Zboon K, Al-Harahsheh MS, Hani FB (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. J Hazard Mater 188:414–421. https://doi.org/10.1016/j.jhazmat.2011.01.133

    CAS  Article  Google Scholar 

  9. Al-Zboon KK, Al-smadi BM, Al-Khawaldh S (2016) Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut 227:248–222. https://doi.org/10.1007/s11270-016-2937-5

    CAS  Article  Google Scholar 

  10. Anfar Z, El Haouti R, Lhanafi S et al (2017) Treated digested residue during anaerobic co-digestion of Agri-food organic waste: methylene blue adsorption, mechanism and CCD-RSM design. J Environ Chem Eng 5:5857–5867. https://doi.org/10.1016/j.jece.2017.11.015

    CAS  Article  Google Scholar 

  11. Anfar Z, Ait Ahsaine H, Zbair M, et al (2019) Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. Crit Rev Environ Sci Technol 1–42. doi: https://doi.org/10.1080/10643389.2019.1642835

  12. Anoop Krishnan K, Ajmal K, Faisal AK, Liji TM (2015) Kinetic and isotherm modeling of methylene blue adsorption onto kaolinite clay at the solid-liquid interface. Sep Sci Technol 50:1147–1157. https://doi.org/10.1080/01496395.2014.965832

    CAS  Article  Google Scholar 

  13. Badri N, Zbair M, Sahibed-Dine A et al (2018) Adsorption of cationic dyes by waste biomass treated by phosphoric acid. J Mater Environ Sci 9:1636–1644. https://doi.org/10.26872/jmes.2018.9.6.182

    Article  Google Scholar 

  14. Banaei A, Samadi S, Karimi S et al (2017) Synthesis of silica gel modified with 2,2′-(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of Reactive Yellow 84 and Reactive Blue 19 dyes from aqueous solutions: equilibrium and thermodynamic studies. Powder Technol 319:60–70. https://doi.org/10.1016/j.powtec.2017.06.044

    CAS  Article  Google Scholar 

  15. Ben Mansour H, Corroler D, Barillier D, Ghedira K, Chekir L, Mosrati R (2007) Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food Chem Toxicol 45:1670–1677. https://doi.org/10.1016/j.fct.2007.02.033

    CAS  Article  Google Scholar 

  16. Ben Mansour H, Barillier D, Corroler D, Ghedira K, Chekir-Ghedira L, Mosrati R (2009) In vitro study of DNA damage induced by acid orange 52 and its biodegradation derivatives. Environ Toxicol Chem 28:489–495. https://doi.org/10.1897/08-333.1

    CAS  Article  Google Scholar 

  17. Benzidia N, Salhi A, Bakkas S, Khamliche L (2015) Biosorption of copper Cu (II) in aqueous solution by chemically modified crushed marine algae (Bifurcaria bifurcata): equilibrium and kinetic studies. Mediterranean Journal of Chemistry 4:85–92. https://doi.org/10.13171/mjc.4.2.2015.08.04.11.19/khamliche

    CAS  Article  Google Scholar 

  18. Benzidia N, Salhi A, Bentiss F et al (2017) Kinetics and equilibrium studies on biosorption of cadmium and lead ions from aqueous solutions by chemically modified algae Bifurcaria bifurcata. J Mater Environ Sci 8:4778–4784

    Google Scholar 

  19. Chinoune K, Bentaleb K, Bouberka Z et al (2016) Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl Clay Sci 123:64–75. https://doi.org/10.1016/j.clay.2016.01.006

    CAS  Article  Google Scholar 

  20. Cusioli LF, Quesada HB, Baptista ATA et al (2019) Soybean hulls as a low-cost biosorbent for removal of methylene blue contaminant. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13328

  21. DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 12:405–414. https://doi.org/10.1080/10643389309388453

    Article  Google Scholar 

  22. dos Santos KJL, dos Santos GE de Sá ÍMGLGL, et al (2019) Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour Technol 293:122093. Doi: https://doi.org/10.1016/j.biortech.2019.122093

  23. El Atouani S, Belattmania Z, Reani A et al (2019) Brown seaweed Sargassum muticum as low-cost biosorbent of methylene blue. Int J Environ Res 13:131–142. https://doi.org/10.1007/s41742-018-0161-4

    CAS  Article  Google Scholar 

  24. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    CAS  Article  Google Scholar 

  25. Freundlich H (1907) Über die adsorption in Lösungen. Z Phys Chem 57U. https://doi.org/10.1515/zpch-1907-5723

  26. Ganesh R, Boardman GD, Michelsen D (1994) Fate of azo dyes in sludges. Water Res 28:1367–1376. https://doi.org/10.1016/0043-1354(94)90303-4

    CAS  Article  Google Scholar 

  27. Ghosh K, Bar N, Biswas AB, Das SK (2019) Removal of methylene blue (aq) using untreated and acid-treated eucalyptus leaves and GA-ANN modelling. Can J Chem Eng 97:2883–2898. https://doi.org/10.1002/cjce.23503

    CAS  Article  Google Scholar 

  28. Haffad H, Zbair M, Anfar Z et al (2019) Removal of reactive red-198 dye using chitosan as an adsorbent: optimization by central composite design coupled with response surface methodology. Toxin rev 1–13. doi: https://doi.org/10.1080/15569543.2019.1584822

  29. Hamdaoui O, Chiha M (2007) Removal of methylene blue from aqueous solutions by wheat bran. Acta Chim Slov 54:407–418

    CAS  Google Scholar 

  30. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043

    CAS  Article  Google Scholar 

  31. Hu C, Hu N, Li X et al (2017) Adsorption of remazol brilliant blue R by carboxylated multi-walled carbon nanotubes. Desalin Water Treat 62:282–289. https://doi.org/10.5004/dwt.2017.20145

    CAS  Article  Google Scholar 

  32. Kloareg PB (1991) Structure and propriétés d’échange des parois cellulaires des algues brunes. Implications écophysiologiques. Bull la Soc Bot Fr Actual Bot 138:305–318. https://doi.org/10.1080/01811789.1991.10827076

    Article  Google Scholar 

  33. Lakshmipathy R, Sarada NC (2016) Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies. Desalin Water Treat 25:10632–10645. https://doi.org/10.1080/19443994.2015.1040462

    CAS  Article  Google Scholar 

  34. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I Solids J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    CAS  Article  Google Scholar 

  35. Lazim ZM, Mazuin E, Hadibarata T, Yusop Z (2015) The removal of methylene blue and Remazol Brilliant Blue R Dyes by using orange peel and spent tea leaves. J Teknol 74:129–135. https://doi.org/10.11113/jt.v74.4882

    Article  Google Scholar 

  36. Mafra MR, Igarashi-Mafra L, Zuim DR et al (2013) Adsorption of remazol brilliant blue on an orange peel adsorbent. Braz J Chem Eng 30:657–665. https://doi.org/10.1590/S0104-66322013000300022

    CAS  Article  Google Scholar 

  37. Monsef Khoshhesab Z, Ahmadi M (2016) Removal of reactive blue 19 from aqueous solutions using NiO nanoparticles: equilibrium and kinetic studies. Desalin Water Treat 57:20037–20048. https://doi.org/10.1080/19443994.2015.1101713

    CAS  Article  Google Scholar 

  38. Ouasfi N, Bouzekri S, Zbair M et al (2019a) Carbonaceous material prepared by ultrasonic assisted pyrolysis from algae (Bifurcaria bifurcata): response surface modeling of aspirin removal. Surfaces and Interfaces 14:61–71. https://doi.org/10.1016/j.surfin.2018.11.008

    CAS  Article  Google Scholar 

  39. Ouasfi N, Zbair M, Bouzikri S et al (2019b) Selected pharmaceuticals removal using algae derived porous carbon: experimental{,} modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086F

    CAS  Article  Google Scholar 

  40. Silva MMF, Oliveira MM, Avelino MC et al (2012) Adsorption of an industrial anionic dye by modified-KSF-montmorillonite: evaluation of the kinetic, thermodynamic and equilibrium data. Chem Eng J 203:259–268. https://doi.org/10.1016/j.cej.2012.07.009

    CAS  Article  Google Scholar 

  41. Tenev MD, Farías A, Torre C et al (2019) Cotton industry waste as adsorbent for methylene blue. J Sustain Dev Energy, Water Environ Syst 7:667–677. https://doi.org/10.13044/j.sdewes.d7.0269

    Article  Google Scholar 

  42. Tran HN, Chao HP (2018) Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process. Environ Sci Pollut Res 25:12808–12820. https://doi.org/10.1007/s11356-018-1295-9

    CAS  Article  Google Scholar 

  43. Tran HN, Chao H-P, You S-J (2017a) Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorpt Sci Technol 36:95–113. https://doi.org/10.1177/0263617416684837

    CAS  Article  Google Scholar 

  44. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017b) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    CAS  Article  Google Scholar 

  45. Tran HN, You SJ, Nguyen TV, Chao HP (2017c) Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem Eng Commun 204:1020–1036. https://doi.org/10.1080/00986445.2017.1336090

    CAS  Article  Google Scholar 

  46. Weber WJ, Morris JC (1963) Kinetics of adsorption carbon from solutions. J Sanit Engeering Div Proceedings Am Soc Civ Eng 89:31–60

    Google Scholar 

  47. Zbair M, Ainassaari K, Drif A, Ojala S, Bottlinger M, Pirilä M, Keiski RL, Bensitel M, Brahmi R (2018a) Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ Sci Pollut Res 25:1869–1882. https://doi.org/10.1007/s11356-017-0634-6

    CAS  Article  Google Scholar 

  48. Zbair M, Ainassaari K, El Assal Z et al (2018b) Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. Environ Sci Pollut Res 25:35657–35671. https://doi.org/10.1007/s11356-018-3455-3

    CAS  Article  Google Scholar 

  49. Zbair M, Anfar Z, Ait Ahsaine H et al (2018c) Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.10.058

  50. Zbair M, Anfar Z, Khallok H et al (2018d) Adsorption kinetics and surface modeling of aqueous methylene blue onto activated carbonaceous wood sawdust. Fullerenes Nanotub Carbon Nanostructures 26:433–442. https://doi.org/10.1080/1536383X.2018.1447564

    CAS  Article  Google Scholar 

  51. Zbair M, Bottlinger M, Ainassaari K, Ojala S, Stein O, Keiski RL, Bensitel M, Brahmi R (2018e) Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste and Biomass Valorization:1–20. https://doi.org/10.1007/s12649-018-00554-0

  52. Zbair M, Ahsaine HA, Anfar Z, Slassi A (2019a) Carbon microspheres derived from walnut shell: rapid and remarkable uptake of heavy metal ions, molecular computational study and surface modeling. Chemosphere 231:140–150. https://doi.org/10.1016/j.chemosphere.2019.05.120

    CAS  Article  Google Scholar 

  53. Zbair M, Anfar Z, Ait Ahsaine H, Khallok H (2019b) Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv 9:1084–1094. https://doi.org/10.1039/C8RA09337G

    CAS  Article  Google Scholar 

  54. Zeghoud L, Gouamid M, Ben Mya O, Rebiai A, Saidi M (2019) Adsorption of methylene blue dye from aqueous solutions using two different parts of palm tree: palm frond base and palm leaflets. Water Air Soil Pollut 230:195–199. https://doi.org/10.1007/s11270-019-4255-1

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the CUR CA2D and Littomer of Chouaïb Doukkali University (El Jadida-Morocco) for their support. The authors would also like to thank Professors Charafeddine Jama (University of Lille) and Fouad Bentiss (Faculty of Sciences, UCD, El Jadida) for their valuable collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Layachi Khamliche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouzikri, S., Ouasfi, N., Benzidia, N. et al. Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions. Environ Sci Pollut Res 27, 33636–33648 (2020). https://doi.org/10.1007/s11356-020-07846-w

Download citation

Keywords

  • Biosorption
  • Alga
  • Bifurcaria bifurcata
  • Methylene blue
  • Reactive Blue 19